
2005/09/19-21 Peter Andersen 1

Porting BETA to
ROTOR/sscli

ROTOR Capstone Workshop,
Sept 19 - 21 2005
by Peter Andersen

Peter Andersen 22005/09/19-21

ROTOR RFP II

1. “hello-world” up to complete compiler test suite
� Almost OK at time of RFP II

2. Implement (some) missing features in language
mapping and libraries

3. Bootstrap the BETA compiler to ROTOR and .NET
4. Possibly develop a GUI framework on top of ROTOR

and .NET.
� System.Windows.Forms and System.Drawing not available on

ROTOR (but Views available)

5. Investigate mechanisms for Simula/BETA-style
coroutines

Peter Andersen 32005/09/19-21

[Re 1-2] BETA.Net status
� Most language features implemented
� Patterns mapped to classes, nested patterns become

nested classes with explicit uplevel link
� Enter-do-exit semantics implemented by generating

separate methods for Enter(), Do(), and Exit()
� Use of patterns as methods supported by generated

convenience methods
� Virtual classes – corresponding to generics (.NET 2.0)

implemented with virtual instantiation methods and a lot
of (unnecessary) casting.

� INNER semantics implemented with multiple virtual
method chains

Go to BETA introduction and mapping appendix

Peter Andersen 42005/09/19-21

[Re 1-2] BETA.Net status
� Pattern variables: Classes and methods as first-class

values implemented with reflection
� Leave/restart out of nested method activations

implemented with exceptions (expensive!)
� Multiple return values – implemented with extra fields
� Interface to external classes - Rudimentary support for

overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection

� Coroutines and concurrency - More on this later…
� Basic libraries (text, file, time etc.), implemented on top

of .NET BCL

Go to BETA introduction and mapping appendix

Peter Andersen 52005/09/19-21

[Re 3] Bootstrapped compiler
� 122.000 lines BETA source, including used libraries
� Bootstrapped compiler up-n-running ☺

� Download: http://www.daimi.au.dk/~beta/ooli/download/
� Very slow!

� Managed compiler running on .NET CLR:
� Compiles small programs nicely
� Crashes on larger programs with
System.OutOfMemoryException

� Perfect case for debugging via ROTOR (SOS extension)
� ”what is the actual reason that the EE throws that exception?”

� BUT: Managed compiler does not fail on ROTOR ☺ / ?

http://www.daimi.au.dk/~beta/ooli/download/

Peter Andersen 62005/09/19-21

[Re 3] Compiler statistics
� Some statistics: Compilation of complete test suite on 1.7GHz laptop:
� About 12000 lines of BETA code, including parsing, semantic checking, code

generation and 75 calls of ilasm. 96000 lines of IL generated (!).
� Native (win32) nbeta:

� 21 seconds
� 11Mb memory consumption

� .NET CLR:
� Fails about halfway with System.OutOfMemoryException
� Memory consumption 110Mb (> 100Mb of physical memory free!?)
� Number of threads created: 7872

� sscli (win32) checked:
� 2 hours 3 minutes ~ slowdown 350 !!
� 160Mb max mem. consumption.
� Number of threads created: 25502

� sscli (win32) fastchecked:
� 54 minutes ~ slowdown 154

� sscli (win32) free:
� 17 minutes ~ slowdown 48
� 145Mb max mem. consumption.

Peter Andersen 72005/09/19-21

[Re 3] Why compiler slow?

� Nprof screenshot:

Peter Andersen 82005/09/19-21

[Re 3] Bootstrapped compiler

� Indicates that current Coroutine
implementation is major bottleneck

� Other measurements also indicate that
Coroutine switching contributes about a
factor 100 more than other BETA
constructs to slow down

� So we need to look more at Coroutines!!

Peter Andersen 92005/09/19-21

[Re 5]: Coroutines in C#

� Imagine:

� Do() is action part of coroutine
� First S.call() will invoke S.Do()
� S.suspend() will return to the point of S.call() and resume

execution after S.call()
� Subsequent S.call() will resume execution in S where it

was last suspended

abstract class Coroutine // Similar to Thread
{ ...
public void call() { ... } // a.k.a. attach/resume
public void suspend() { ... }
public abstract void Do(); // Similar to Run()

}
SpecificCoroutine: Coroutine{ … }
Coroutine S = new SpecificCoroutine();

Go to coroutine appendix

Peter Andersen 102005/09/19-21

[Re 5] Current impl. of class Coroutine
� class Coroutine implemented by

means of System.Threading.Thread and
System.Threading.Monitor
public class Coroutine {
public static Coroutine current;
private Coroutine caller; // backlink; this when suspended
private System.Threading.Thread myThread; // notice private
public Coroutine ()
{ ... Constructor: allocate myThread starting in run; set up caller etc. }
private void run()
{ ... Thread entry point: call Do()and then terminate myThread … }
public void swap()
{ ... Main call() / suspend() handling; next slide … }
public abstract void Do();

}

Peter Andersen 112005/09/19-21

[Re 5] Current impl. of Coroutine.swap()

public void swap()
{

lock (this){
Coroutine old_current = current;
current = caller;
caller = old_current;
if (!myThread.IsAlive) {

myThread.Start();
} else {

System.Threading.Monitor.Pulse(this);
}
System.Threading.Monitor.Wait(this);
}

}

Currently executing
Component/Coroutine

Swap pointers

Start or resume
new current

Suspend old current

� Used asymmetrically:
� Call: this == to become current; this.caller == this
� Suspend: this == current; this.caller to be resumed

Peter Andersen 122005/09/19-21

� Measurements from JVM indicate that thread
allocation is the culprit – use of threadpool for
reusing threads gave significant speed up
� .NET / ROTOR same problem?
� Did not (yet) try this optimization for .NET

� Otherwise unreferenced threads with unfinished
ThreadStart methods count as GC roots?
� Lots of such coroutines in BETA execution

[Re 5] Coroutine problems?

Peter Andersen 132005/09/19-21

[Re 5] Coroutine support in .NET/ROTOR?

� Direct light-weight user defined scheduling
desirable
�C# 2.0 yield?
�P/Invoke of WIN32 Fibers?
�ROTOR extension?

Peter Andersen 142005/09/19-21

[Re 5] Comparison with C# 2.0 yield

� C# 2.0 has new feature called yield return
�Yield corresponds to suspend()

� Used for implementing enumerator pattern
� May be considered ”poor man’s coroutine”
� Implemented as a simple state-machine
� Can only ”save” one stack frame

Peter Andersen 152005/09/19-21

[Re 5] P/Invoke of WIN32 Fibers
� Described in

� Ajai Shankar: Implementing Coroutines for .NET by Wrapping the
Unmanaged Fiber API
http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET

� Pretty ”hairy” code, inclusing use of undocumented APIs
� http://blogs.msdn.com/greggm/archive/2004/06/07/150298.

aspx :
� ”DON’T USE FIBERS IN A MANAGED APPLICATION. The

1.1/1.0 runtime will deadlock if you try to managed debug a
managed application that used fibers. The CLR team did a lot of
work for fiber support in the 2.0 runtime, but it still won't support
debugging”

� Sample (not?) available for .Net 2.0:
� http://msdn2.microsoft.com/en-us/library/sdsb4a8k (CoopFiber)
� (thank you Fabio)

Update - 9/16/2005: The solution described in
this article relies on undocumented functionality
that is not supported by Microsoft at this time

Update - 9/16/2005: The solution described in
this article relies on undocumented functionality
that is not supported by Microsoft at this time

http://msdn.microsoft.com/msdnmag/find/?type=Au&phrase=Ajai%20Shankar&words=exact
http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx

Peter Andersen 162005/09/19-21

[Re 5] ROTOR extension?
�ROTOR extension with e.g. coswap

bytecode?
� Addition of bytecode presumably straight-forward
� What about co-existence with managed threads,

PAL threads, native threads, thread
synchronization, exception handling etc.?

�We read “Shared Source CLI Essentials” and
browsed the 5M lines of ROTOR source a lot.

�A little overwhelmed with the challenge!
�Needed pre-study with simpler architecture

The concurrency model
is quite complex...

As promised, this
[aborting a thread] is a
pretty hefty chunk of

code...

Peter Andersen 172005/09/19-21

[Re 5] pre-vm

� Joined forces with another ongoing project:
PalCom (http://www.ist-palcom.org)

� As part of PalCom Runtime Environment:
pre-vm virtual machine

� Simple dynamically typed (a la Smalltalk)
interpreted runtime system, <20 bytecodes

� Prototype implemented in Java, currently being
re-implemented in C++ for use in small devices

� (Partial) language mappings for BETA, Java,
Smalltalk

http://www.ist-palcom.org/

Peter Andersen 182005/09/19-21

[Re 5] pre-vm: coroutines

� Coroutine-based environment
� Coroutines (not threads) are the basic scheduling unit
� Coroutines scheduled by user-programmed schedulers

� (Somewhat like Fibers in WIN32)
� Default (replaceable) schedulers included in library
� Different scheduling strategies can be used for

(disjunct) sets of coroutines, e.g. hierarchical
schedulers

� Preemptively scheduled coroutines (i.e. threads)
programmed using interrupt/timer mechanism

Peter Andersen 192005/09/19-21

[Re 5] pre-vm: implementation

� VM support for coroutines:
� Coroutine VM-defined entity which includes a

stack, a current execution point and a backlink to
coroutine that attached it

� Bytecode for coroutine swap:
� Attach(x) → push x; coswap
� Suspend(x) → push x; coswap
� Notice: A coroutine may suspend another (which needs to be

active)
� Primitives for setting an interrupt interval and an

interrupt handler

Peter Andersen 202005/09/19-21

[Re 5] pre-vm: preemptive scheduling

� Preemptive scheduling:
� Set an interrupt interval
� Set an interrupt handler: Must include a

void handle(Object)
method

� In the handler call Suspend() on the currently active
coroutine and Attach() on the next coroutine to run

� Interrupts only detected at the so-called safe-
points (backward-branches, method entries, and
I/O calls)
� Comparable with GC safe-points in Rotor

Peter Andersen 212005/09/19-21

[Re 5] pre-vm: synchronization and I/O

� Synchronization:
� Critical regions, mutexes, semaphores etc. built using a single

Lock() primitive
� Currently no need for e.g. test-and-set bytecode, as interrupts

only occur at well-known safe-points
� May be needed if more interrupt-places added to reduce latency;

simple to implement
� Blocking I/O impl: Two approaches:

� If an interrupt is detected at the I/O call, interpreter continues on
a fresh (native) thread, and blocking I/O thread stops after I/O
call completed (current strategy)

� Programmer must distinguish between potentially blocking and
non-blocking I/O calls. Blocking calls automatically done by
another thread (considered)

Peter Andersen 222005/09/19-21

[Re 5] Coroutines: status

� Pre-vm is still very much work-in-progress (project on
second year out of four)

� Results so far look promising; i.e. the idea of using
coroutines as the sole scheduling entity seems realizable
� Simple VM-level semantics
� Simple implementation

� Problem with unterminated coroutines staying alive can
be completely controlled by user-programmed scheduler

� Potential problem:
� Different user-programmed (preemptive) schedulers in separate

components may conflict – especially if the need to synchronize
between components

Peter Andersen 232005/09/19-21

[Re 5] Coroutines: status

� Difficult (yet) to say how much of this can be applied to
ROTOR/.NET
� Same ideas could probably be realized if coroutine systems

always reside within one managed thread and synchronization of
coroutines with managed threads is not considered

� Interesting to see how far we can get in ROTOR.
� Probably much better ”dressed” when we have the embedded

C++ implementation of pre-vm implemented and example
applications running on top of it

� If a Fiber API actually gets into Whidbey, presumably
this will get much easier

Peter Andersen 242005/09/19-21

Future plans
� Obvious optimizations in current C# implementation of

Coroutines (e.g. ThreadPool)
� More lessons to learn from pre-vm work
� Perhaps co-operation with Cambridge?

� Previous contact to MSR Cambridge guys who patched a JVM to
include support for Coroutines

� Perhaps co-operation with Redmond?
� Contacts within C# team and CLR team. Coroutine co-operation

suggested.
� Perhaps co-operation with PUC-Rio
� Exciting to see what things look like after .Net 2.0 (and

later ROTOR 2.0)

Peter Andersen 252005/09/19-21

Contacts:

� Peter Andersen (that’s me)
mailto:datpete@daimi.au.dk

� Prof. Ole Lehrmann Madsen
mailto:olm@daimi.au.dk

� Info & download:
http://www.daimi.au.dk/~beta/ooli

Questions?

mailto:datpete@daimi.au.dk
mailto:olm@daimi.au.dk
http://www.daimi.au.dk/~beta/ooli

Peter Andersen 262005/09/19-21

Appendices

� The following slides not presented at
Capstone workshop

� Added as backgound material
� Appendix A describes a basic BETA

program and how it is mapped to .NET
� Appendix B describes coroutines in

general, here expressed in C#

Peter Andersen 272005/09/19-21

App. A: BETA Language Mapping
� Object-oriented programming language

� Scandinavian school of OO, starting with the Simula
languages

� Simple example:

Calculator:
(# R: @integer;

set:
(# V: @integer enter V do V → R #);
add:
(# V: @integer enter V do R+V → R exit R #);

#);

A pattern named
Calculator

Static instance
variable named R

Internal pattern
named set with
an input variable V

Internal pattern named add
with an input variable V and
a return value named R

Go back to BETA.Net status

Peter Andersen 282005/09/19-21

App. A: BETA example use
Calculator:
(# R: @integer;

set:
(# V: @integer enter V do V → R #);
add:
(# V: @integer enter V do R+V → R exit R #);

#);

C: @Calculator;
X: @integer;

5 → C.add → X

Use of add as a method:
C: @Calculator;
X: @integer;
A: ^C.add;
&C.add[] → A[];
5 → A → X

Use of add as a class: Creation of
an instance
of C.add

Execution of
the C.add
instance

Go back to BETA.Net status

Peter Andersen 292005/09/19-21

App. A: BETA vs. CLR/CLS
� Class and method unified in pattern
� General nesting of patterns, i.e. also of methods

� Uplevel access to fields of outer patterns
� INNER instead of super
� Enter-Do-Exit semantics
� Genericity in the form of virtual patterns
� Multiple return values
� Active objects in the form of Coroutines
� No constructors, no overloading
� No dynamic exceptions

Go back to BETA.Net status

Peter Andersen 302005/09/19-21

App. A: BETA.Net/Rotor Challenges
� Mapping must be complete and semantically correct
� BETA should be able to use classes from other

languages and visa versa
� BETA should be able to inherit classes from other

languages and visa versa
� In .NET terminology:

� BETA compliant with Common Language Specification (CLS)
� BETA should be a CLS Extender

� The BETA mapping should be ’nice’ when seen from
other languages

� Existing BETA source code should compile for .NET

Go back to BETA.Net status

Peter Andersen 312005/09/19-21

public class Calculator: System.Object {
public int R;
public int add(int V) { R = R + V; return R;}

…
}
…

}

Cannot be used as a class

App. A: Mapping patterns: nested classes
public class Calculator: System.Object {

public int R;
public class add: System.Object {

public int V;
…

}
…

}

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
public void Enter(int a) { V = a; }
public void Do() { R = R + V; }
public int Exit() { return R; }

}
…

} Error: Outer R cannot be
accessed from
nested class!

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
Calculator origin;
public add(Calculator outer) { origin = outer; }
public void Enter(int a) { V = a; }
public void Do() { origin.R = origin.R + V; }
public int Exit() { return origin.R; }

}
…

}

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
Calculator origin;
public add(Calculator outer) { origin = outer; }
public void Enter(int a) { V = a; }
public void Do() { origin.R = origin.R + V; }
public int Exit() { return origin.R; }

}
public int call_add(int V){

add A = new add(this);
A.Enter(V);
A.Do();
return A.Exit();

}
…

} CLS does not allow for this
to be called just add()

Calculator:
(# R: @integer;

…
add:
(# V: @integer
enter V
do R+V → R
exit R
#);

#);

Go back to BETA.Net status

Peter Andersen 322005/09/19-21

App. A: Use of add as a class:
C: @Calculator;

X: @integer;
A: ^C.add;
&C.add[] → A[];
5 → A → X

Calculator C
= new Calculator()

int X;
Calculator.add A;
A = new Calculator.add(C);
A.Enter(5);
A.Do()
X = A.Exit();

Go back to BETA.Net status

Peter Andersen 332005/09/19-21

App. A: Use of add as a method

C: @Calculator;

X: @integer;
5 → C.add → X

Calculator C
= new Calculator()

int X;
X = C.call_add(5);

Go back to BETA.Net status

Peter Andersen 342005/09/19-21

App. A: Not described here…
� Virtual classes – corresponding to generics (.NET 2.0)

– implemented with virtual instantiation methods and a
lot of (unnecessary) casting.

� Coroutines and concurrency - More on this later…
� Pattern variables: Classes and methods as first-class

values – implemented with reflection
� Leave/restart out of nested method activations –

implemented with exceptions (expensive!)
� Multiple return values – implemented with extra fields
� Interface to external classes - Rudimentary support

for overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection

� Numerous minor details!

Go back to BETA.Net status

Peter Andersen 352005/09/19-21

App. B: Coroutines in C#

� Given the C# Coroutine definition included
in the main part of these slides:

abstract class Coroutine // Similar to Thread
{ ...
public void call() { ... }
public void suspend() { ... }
public abstract void Do(); // Similar to Run()

}
SpecificCoroutine: Coroutine{ … }
Coroutine S = new SpecificCoroutine();

Go back to coroutine implementation

Peter Andersen 362005/09/19-21

App. B: Example: Adder

� Produces sequence
start + start,
(start+1)+(start+1)
…

� By using (infinite)
recursion

� Suspends after
each computation

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Go back to coroutine implementation

Peter Andersen 372005/09/19-21

App. B: Example: Multiplier

� Produces sequence
start * start,
(start+1) * (start+1)
…

� By using (infinite)
recursion

� Suspends after
each computation

class Multiplier: Coroutine {
public int res;
int start;
public Multiplier(int s) {

start = s;
}
void compute(int V){

res = V*V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Go back to coroutine implementation

Peter Andersen 382005/09/19-21

App. B: Merger

� Merge sequences
produced by
Adder instance
and Multiplier
instance

� Sort in ascending
order

� First 6 values

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Go back to coroutine implementation

Peter Andersen 392005/09/19-21

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

MA

merger*

Do

Coroutine

Method
invocation

Caller link (back-link) –
initially self

current

Go back to coroutine implementation

Peter Andersen 402005/09/19-21

MA

merger*

Do

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Do

Compute

Call() is basically
just a swap of two

pointers

current

Go back to coroutine implementation

Peter Andersen 412005/09/19-21

MA

merger*

Do

Do

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

suspend() is also
basically just a swap

of two pointers
current

Go back to coroutine implementation

Peter Andersen 422005/09/19-21

MA

merger*

Do

Do

Compute

class Multiplier: Coroutine {
public int res;
int start;
public Multiplier(int s) {

start = s;
}
void compute(int V){

res = V*V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Do

Compute

current

Go back to coroutine implementation

Peter Andersen 432005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

current

Go back to coroutine implementation

Peter Andersen 442005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Compute

current

Go back to coroutine implementation

Peter Andersen 452005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

… and so on

Go back to coroutine implementation

current

	Porting BETA to ROTOR/sscli
	ROTOR RFP II
	[Re 1-2] BETA.Net status
	[Re 1-2] BETA.Net status
	[Re 3] Bootstrapped compiler
	[Re 3] Compiler statistics
	[Re 3] Why compiler slow?
	[Re 3] Bootstrapped compiler
	[Re 5]: Coroutines in C#�
	[Re 5] Current impl. of class Coroutine
	[Re 5] Current impl. of Coroutine.swap()
	[Re 5] Coroutine problems?
	[Re 5] Coroutine support in .NET/ROTOR?
	[Re 5] Comparison with C# 2.0 yield
	[Re 5] P/Invoke of WIN32 Fibers
	[Re 5] ROTOR extension?
	[Re 5] pre-vm
	[Re 5] pre-vm: coroutines
	[Re 5] pre-vm: implementation
	[Re 5] pre-vm: preemptive scheduling
	[Re 5] pre-vm: synchronization and I/O
	[Re 5] Coroutines: status
	[Re 5] Coroutines: status
	Future plans
	Contacts:
	Appendices
	App. A: BETA Language Mapping
	App. A: BETA example use
	App. A: BETA vs. CLR/CLS
	App. A: BETA.Net/Rotor Challenges
	App. A: Mapping patterns: nested classes
	App. A: Use of add as a class:
	App. A: Use of add as a method
	App. A: Not described here…
	App. B: Coroutines in C#
	App. B: Example: Adder
	App. B: Example: Multiplier
	App. B: Merger

