Porting BETA to

ROTOR/sscli

ROTOR Capstone Workshop,

Sept 19 - 21 2005
by Peter Andersen

2005/09/19-21 Peter Andersen 1

" S
ROTOR RFP II

1. “hello-world” up to complete compiler test suite
m Almost OK at time of RFP Il

2. Implement (some) missing features in language
mapping and libraries

Bootstrap the BETA compiler to ROTOR and .NET

4. Possibly develop a GUI framework on top of ROTOR
and .NET.

m System.Windows.Forms and System.Drawing not available on
ROTOR (but Views available)

5. Investigate mechanisms for Simula/BETA-style
coroutines

2005/09/19-21 Peter Andersen

T Go to BETA introduction and mapping appendix
|[Re 1-2] BETA.Net status

m Most language features implemented

m Patterns mapped to classes, nested patterns become
nested classes with explicit uplevel link

m Enter-do-exit semantics implemented by generating
separate methods for Enter(), Do(), and EXxit()

m Use of patterns as methods supported by generated
convenience methods

m Virtual classes — corresponding to generics (.NET 2.0)
implemented with virtual instantiation methods and a lot
of (unnecessary) casting.

m INNER semantics implemented with multiple virtual
method chains

2005/09/19-21 Peter Andersen 3

T Go to BETA introduction and mapping appendix
|[Re 1-2] BETA.Net status

m Pattern variables: Classes and methods as first-class
values implemented with reflection

m | eave/restart out of nested method activations
Implemented with exceptions (expensive!)

m Multiple return values — implemented with extra fields

m Interface to external classes - Rudimentary support for
overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection

m Coroutines and concurrency - More on this later...

m Basic libraries (text, file, time etc.), implemented on top
of NET BCL

2005/09/19-21 Peter Andersen 4

|Re 3] Bootstrapped compiler

m 122.000 lines BETA source, including used libraries

m Bootstrapped compiler up-n-running ©
Download: http://www.daimi.au.dk/~beta/ooli/download/
Very slow!

m Managed compiler running on .NET CLR:

Compiles small programs nicely

Crashes on larger programs with
System.OutOfMemoryException

m Perfect case for debugging via ROTOR (SOS extension)
"what is the actual reason that the EE throws that exception?”

m BUT: Managed compiler does not fail on ROTOR © ® ?

2005/09/19-21 Peter Andersen

http://www.daimi.au.dk/~beta/ooli/download/

" J
[Re 3] Compller statistics

Some statistics: Compilation of complete test suite on 1.7GHz laptop:

m About 12000 lines of BETA code, including parsing, semantic checking, code
generation and 75 calls of ilasm. 96000 lines of IL generated (!).

m Native (win32) nbeta:
21 seconds
11Mb memory consumption
m .NET CLR:
Fails about halfway with System.OutOfMemoryException
Memory consumption 110Mb (> 100Mb of physical memory free!?)
Number of threads created: 7872
m sscli (win32) checked:
2 hours 3 minutes ~ slowdown 350 !!
160Mb max mem. consumption.
Number of threads created: 25502
m sscli (win32) fastchecked.:
54 minutes ~ slowdown 154
m sscli (win32) free:
17 minutes ~ slowdown 48
145Mb max mem. consumption.

2005/09/19-21 Peter Andersen 6

[Re 3] Why compller slow?

m Nprof screenshot:

Signature

® O rbetasie (2756)

& Thread #1371341
£ Thread #1365031
G Thread #1370812
 Thresd #1365702
C Thread #1368093
G Thresd #5350535
G Thread #1366692

void Coroutine :runi

void Astinterfacedcompier $irans$Synthesizer $synthesizer $singul

void Coraltine: :swiap ()
void Coroutine, :suspend?)

static boaol System . Threading.Monitor: Wait{Cbject, int32, boaol)

stafic bool System. Threading Monitor ;Wait{Cbiject)

Rl e

G Thread #1368181

& Thread #1372188 -

£ Trand wr3ER358
< »
= [#] M Mamespaces

] System

Fropcts @%| Untitled Project 21 [31-08-2005 22:55:17]

L=l
112101592

0TI
109

112101892

(0259552 wobd Coroulne. Tund

of Cal

vord Astir waer $yTiheserfanguiar_0_2535yith_mangEvaHandersscantiiad Do)

a0t WAObIeT, NEIZ, bool)
Mot

i
ArarsgSemATType oS canner Do)
ritrarsdSemAnType dGarerabidScanner: NiScanren()

erfransdSamanTypedGenerabitScannerdiiiScamer Do)

\Sming: ConcabiCkgect])
Lompder $T AT $SemATIT e DescSonaRef()
SompEerdT aNEESAMATITy PR sDescSoreRal. Do
1£32: Tosrng()

s 9% in 9 in
i E

ol SBOTTotdl ¥ | Children
:ﬁ 97,99 88,97 902
s 8,97 0,04 8,93
s 785 0,01 783
voars 781 0,06 7,75
vohs 7,18 7,18 0
e 7,18 0,01 7,18
Sgnaurs «

SLANC 5B Coroutine: ID(Coroutne)

State: SENG System, Song: Concat(Sung, Sung)

state: voud Coroutre: Trace{Surg)

statec voud Systemn. Threadng Monfon: PuteDbpct)

word Astinter W fangular_0_FSgeymith_mandEvaHander scantiiad 100 ()

sl adunuunnrbeuneiaun ooy

wofc.

(SRS

897

i
ki % Serpericled
o
893 o
183 o
275 o
(] a
718 o
0gs o
064 a
0E3 a
02 a
0.53 0
040 0
040 0
0,30 0
027 0
025 0
023 Q
017 0
3 0,17 Q
14 005 a
L 0,14 0
Ik 0,10 0
002 0,10 o
007 0,11 o
007 008 o
0,07 007 o
001 07 o
001 008 o
001 007 o
oo 007 o
0ns onz 0
onz ons 0
003 004 o
om ons 0
006 o 0
003 003 a
003 003 a
003 003 o
nm nna n

Rinady,

2005/09/19-21

Peter Andersen

|Re 3] Bootstrapped compiler

m Indicates that current Coroutine
Implementation is major bottleneck

m Other measurements also indicate that
Coroutine switching contributes about a
factor 100 more than other BETA
constructs to slow down

m SO we need to look more at Coroutines!!

2005/09/19-21 Peter Andersen

" S
[Re 5]. Coroutines in C#

abstract class Coroutine // Similar to Thread

| [..
m |[magine: public void call() { ... } // a.k.a. attach/resume

public void suspend() { ... }
public abstract void Do(); // Similar to Run()

}

SpecificCoroutine: Coroutine{ ... }
Coroutine S = new SpecificCoroutine();

m Do() is action part of coroutine
First S.call() will invoke S.Do()

m S.suspend() will return to the point of S.call() and resume
execution after S.call()

m Subsequent S.call() will resume execution in S where it
was last suspended

2005/09/19-21 Peter Andersen 9

[Re 5] Current impl. of class Coroutine

m class Coroutine Implemented by

means of System.Threading.Thread and
System.Threading.Monitor

public class Coroutine {
public static Coroutine current;
private Coroutine caller; // backlink; this when suspended
private System.Threading.Thread myThread; // notice private
public Coroutine (O
{ ... Constructor: allocate myThread starting in run; set up caller etc. }
private void run()
{ ... Thread entry point: call Do()and then terminate myThread .. }
public void swap()
{ ... Main call () / suspend() handling; next slide ... }
public abstract void Do();

}

2005/09/19-21 Peter Andersen 10

"
[Re 5] Current impl. of Coroutine.swap()

m Used asymmetrically:

Call: this == to become current; this.caller == this
Suspend: this == current; this.caller to be resumed

public void swap() Currently executing
{ Component/Coroutine
lock (this){

Coroutine old current = current;

current = caller; Swap pointers

caller = old _current;

IT (!myThread.IsAlive) {

myThread.Start();
1 else { Start or resume

System.Threading.Monitor.Pulse(this); new current

}

System.Threading.Monitor._Wait(this);
1 Suspend old current

}

2005/09/19-21 Peter Andersen 11

" A
[Re 5] Coroutine problems?

m Measurements from JVM indicate that thread
allocation is the culprit — use of threadpool for
reusing threads gave significant speed up

NET / ROTOR same problem?
Did not (yet) try this optimization for .NET

m Otherwise unreferenced threads with unfinished
ThreadStart methods count as GC roots?
Lots of such coroutines in BETA execution

2005/09/19-21 Peter Andersen 12

"
[Re 5] Coroutine support in .NET/ROTOR?

m Direct light-weight user defined scheduling
desirable
C# 2.0 yield?
P/Invoke of WIN32 Fibers?
ROTOR extension?

2005/09/19-21 Peter Andersen 13

"
[Re 5] Comparison with C# 2.0 yield

m C# 2.0 has new feature called yield return
Yield corresponds to suspend()

m Used for implementing enumerator pattern
m May be considered "poor man’s coroutine”
m Implemented as a simple state-machine

m Can only "save” one stack frame

2005/09/19-21 Peter Andersen 14

" A
|Re 5] P/Invoke of WIN32 Fibers

: i Update - 9/16/2005: The solution described in
u Descrlbed In this article relies on undocumented functionality

Ajal Shankar: Implew nting that is not supported by Microsoft at this time e

Unmanaged Fibey,
http://msdn.micrésoft.com/msdnmaqg/issues/03/09/CoroutinesinNET

m Pretty "hairy” code, inclusing use of undocumented APIs
m http://blogs.msdn.com/greggm/archive/2004/06/07/150298.

asSpXx .

"DON’'T USE FIBERS IN A MANAGED APPLICATION. The
1.1/1.0 runtime will deadlock if you try to managed debug a
managed application that used fibers. The CLR team did a lot of
work for fiber support in the 2.0 runtime, but it still won't support
debugging”

m Sample (not?) available for .Net 2.0:
http://msdn2.microsoft.com/en-us/library/sdsb4a8k (CoopFiber)
(thank you Fabio)

2005/09/19-21 Peter Andersen 15

http://msdn.microsoft.com/msdnmag/find/?type=Au&phrase=Ajai%20Shankar&words=exact
http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx

[Re 5] ROTOR extension?

RO~ The concurrency model coswap
bvteco is quite complex... %l‘fi'ﬂdmfi{mlte
y Je =
= Additio» ~-argsumably strang&
As promised, this :
- [aborting a thread] is a - managed |
- pretty hefty chunk of S, thread —L
SyNChror._€0de... ___ption handling etc. o™

We read “Shared Source CLI Essentials” and
browsed the 5M lines of ROTOR source a lot.

A little overwhelmed with the challenge!
Needed pre-study with simpler architecture

2005/09/19-21 Peter Andersen 16

" J
[Re 5] pre-vim

m Joined forces with another ongoing project:
PalCom (http://www.ist-palcom.org)

m As part of PalCom Runtime Environment:
pre-vm virtual machine

m Simple dynamically typed (a la Smalltalk)
Interpreted runtime system, <20 bytecodes

m Prototype implemented in Java, currently being
re-implemented in C++ for use in small devices

m (Partial) language mappings for BETA, Java,
Smalltalk

2005/09/19-21 Peter Andersen

http://www.ist-palcom.org/

"
[Re 5] pre-vm: coroutines

m Coroutine-based environment
Coroutines (not threads) are the basic scheduling unit

Coroutines scheduled by user-programmed schedulers
= (Somewhat like Fibers in WIN32)

Default (replaceable) schedulers included in library

Different scheduling strategies can be used for
(disjunct) sets of coroutines, e.g. hierarchical
schedulers

Preemptively scheduled coroutines (i.e. threads)
programmed using interrupt/timer mechanism

2005/09/19-21 Peter Andersen 18

" J
[Re 5] pre-vm: implementation

m VM support for coroutines:

Coroutine VM-defined entity which includes a
stack, a current execution point and a backlink to
coroutine that attached it

Bytecode for coroutine swap:
m Attach(x) — push x; coswap
m Suspend(x) — push x; coswap

= Notice: A coroutine may suspend another (which needs to be
active)

Primitives for setting an interrupt interval and an
interrupt handler

2005/09/19-21 Peter Andersen 19

" I
[Re 5] pre-vm: preemptive scheduling

m Preemptive scheduling:
Set an interrupt interval

Set an interrupt handler: Must include a
void handle(Object)
method

In the handler call Suspend() on the currently active
coroutine and Attach() on the next coroutine to run

m Interrupts only detected at the so-called safe-

points (backward-branches, method entries, and
/O calls)

Comparable with GC safe-points in Rotor

2005/09/19-21 Peter Andersen 20

" A
[Re 5] pre-vm: synchronization and |/O

m Synchronization:

Critical regions, mutexes, semaphores etc. built using a single
Lock() primitive

Currently no need for e.g. test-and-set bytecode, as interrupts
only occur at well-known safe-points

May be needed if more interrupt-places added to reduce latency;
simple to implement
m Blocking I/O impl: Two approaches:

If an interrupt is detected at the 1/O call, interpreter continues on
a fresh (native) thread, and blocking I/O thread stops after I/O
call completed (current strategy)

Programmer must distinguish between potentially blocking and
non-blocking I/O calls. Blocking calls automatically done by
another thread (considered)

2005/09/19-21 Peter Andersen 21

" S
|Re 5] Coroutines: status

m Pre-vm is still very much work-in-progress (project on
second year out of four)

m Results so far look promising; i.e. the idea of using
coroutines as the sole scheduling entity seems realizable
Simple VM-level semantics
Simple implementation

m Problem with unterminated coroutines staying alive can
be completely controlled by user-programmed scheduler

m Potential problem:

Different user-programmed (preemptive) schedulers in separate
components may conflict — especially if the need to synchronize
between components

2005/09/19-21 Peter Andersen 22

"
[Re 5] Coroutines: status

m Difficult (yet) to say how much of this can be applied to
ROTOR/.NET

Same ideas could probably be realized if coroutine systems
always reside within one managed thread and synchronization of
coroutines with managed threads is not considered

m Interesting to see how far we can get in ROTOR.

Probably much better "dressed” when we have the embedded
C++ implementation of pre-vm implemented and example
applications running on top of it

m If a Fiber API actually gets into Whidbey, presumably
this will get much easier

2005/09/19-21 Peter Andersen 23

" J
Future plans

m Obvious optimizations in current C# implementation of
Coroutines (e.g. ThreadPool)

m More lessons to learn from pre-vm work

m Perhaps co-operation with Cambridge?

Previous contact to MSR Cambridge guys who patched a JVM to
iInclude support for Coroutines

m Perhaps co-operation with Redmond?

Contacts within C# team and CLR team. Coroutine co-operation
suggested.

m Perhaps co-operation with PUC-RIo

m EXxciting to see what things look like after .Net 2.0 (and
later ROTOR 2.0)

2005/09/19-21 Peter Andersen 24

" A
Contacts: Questions?

m Peter Andersen (that’s me)
mailto:datpete@daimi.au.dk

m Prof. Ole Lehrmann Madsen
mailto:olm@daimi.au.dk

m Info & download:
http://www.daimi.au.dk/~beta/ooli

2005/09/19-21 Peter Andersen 25

mailto:datpete@daimi.au.dk
mailto:olm@daimi.au.dk
http://www.daimi.au.dk/~beta/ooli

"
Appendices

m The following slides not presented at
Capstone workshop

m Added as backgound material

m Appendix A describes a basic BETA
program and how it is mapped to .NET

m Appendix B describes coroutines Iin
general, here expressed in C#

2005/09/19-21 Peter Andersen

26

App. A: BETA Language Mapping

m Object-oriented programming language
Scandinavian school of OO, starting with the Simula

languages
Simple example: Internal patter_nh
A pattern named named tset.wgtl N
Calculator: Calculator AL EEle
(# R: @integer; Static instance
set: variable named R
(# V: @integer enter V do V —»> R #);
add:

(# V: @integer enter V do R+V —» R exit R #);

#)3 Internal pattern named add
with an input variable V and

a return value named R

2005/09/19-21 Peter Ander 27

App. A: BETA example use

Calculator:
(# R: @integer;
set:
(# V- @integer enter V do V —» R #);
add:
(# V: @integer enter V do R+V — R exit R #);
#);
Use of add as a method: Use of add as a class: Creation of
C: @Calculator; C: @Calculator; gﬂgﬁggce
X: @integer; X: @integer;
5 » C.add —» X A: ~C.add; Execution of
&C.add[] — A[l3; the C.add
instance

5 > Ao X

2005/09/19-21 28

App. A: BETA vs. CLR/CLS

m Class and method unified in pattern

m General nesting of patterns, I.e. also of methods
Uplevel access to fields of outer patterns

INNER instead of super

Enter-Do-Exit semantics

Genericity in the form of virtual patterns
Multiple return values

Active objects in the form of Coroutines
No constructors, no overloading

No dynamic exceptions

2005/09/19-21 Peter Andersen 29

App. A: BETA.Net/Rotor Challenges

m Mapping must be complete and semantically correct

m BETA should be able to use classes from other
languages and visa versa

m BETA should be able to inherit classes from other
languages and visa versa

m In .NET terminology:

BETA compliant with Common Language Specification (CLS)
BETA should be a CLS Extender

m The BETA mapping should be 'nice’ when seen from
other languages

m Existing BETA source code should compile for .NET

2005/09/19-21 Peter Andersen 30

" I
App. A: Mapping patterns: nested classes

public class Calculator: System.Object {
public Int R;
public class add: System.Object {
public Int V;
Calculator origin;

public add(Calculator outer) { origin = outer; }
public void Enter(int a) { V = a; }

public void Do() { origin.R = origin.R + V; }
public 1nt Exit() { return origin.R; }

¥
public iInt call _add(int V){ //65knuator: \\\

2"‘E’n’,§ej((}§v_v add(this): (# R: Q@integer;
A-D00): : add-
return A_EXIt(); G V= ginteger
> enter V
1 CLS does not allow for this do_iﬂé — R
to be called just add() ext

#) 3
2005/09/19-21 Peter Andersen \ #); /

" S
App. A: Use of add as a class:

C: @Calculator; Calculator C
= new Calculator()
X: @integer; int X;
A: ~C.add; Calculator.add A;
&C.add[] — A[l; A = new Calculator.add(C);
5 > A o5 X A_Enter(5);
A.Do()

X = ALExi1t();

2005/09/19-21 Peter Andersen 32

" S
App. A: Use of add as a method

C: @Calculator; Calculator C

= new Calculator()
X: @integer; int X;
5 »> C.add —» X X = C.call _add(b5);

2005/09/19-21 Peter Andersen 33

" S
App. A: Not described here...

m Virtual classes — corresponding to generics (.NET 2.0)
— Implemented with virtual instantiation methods and a
lot of (unnecessary) casting.

m Coroutines and concurrency - More on this later...

m Pattern variables: Classes and methods as first-class
values — implemented with reflection

m Leave/restart out of nested method activations —
Implemented with exceptions (expensive!)

m Multiple return values — implemented with extra fields

m Interface to external classes - Rudimentary support

for overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection

m Numerous minor details!

2005/09/19-21 Peter Andersen 34

] _ Go back to coroutine implementation

App. B: Coroutines in C#

m Given the C# Coroutine definition included
In the main part of these slides:

abstract class Coroutine // Similar to Thread
{...
public void call() { ... }

public void suspend() { ... }

public abstract void Do(); // Similar to Run()
}

SpecificCoroutine: Coroutine{ ... }

Coroutine S = new SpecificCoroutine();

2005/09/19-21 Peter Andersen 35

] _ Go back to coroutine implementation

App. B: Example: Adder

class Adder: Coroutine {

public int res;
m Produces sequence nt A .
upliC erynt s
start + start, et
}
(Start+ 1)+(Start+ 1) void compute(int V){
. res = V+V,
i C . suspend();
m By using (infinite) compute(V+1);
: }
recursion oublic override void Do() {
m Suspends after , compuelsia;
each computation)

2005/09/19-21 Peter Andersen 36

] _ Go back to coroutine implementation

App. B: Example: Multiplier

class Multiplier: Coroutine {

public int res;
m Produces sequence A ——
public Multiplier(int s
start * start, start = s:
(start+1) * (start+1) b .
void compute(int V){
. res = V*V,
) L. suspend();
m By using (infinite) compute(V+1);
- }
recursion oublic override void Do() {
m Suspends after , compuelsia;
each computation)

2005/09/19-21 Peter Andersen 37

] — Go back to coroutine implementation

Ap p . B M e rg er class Merger: Coroutine {

Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

m Merge sequences Acall(; M.call(;

for (int i=0; I<6; i++){
prOdUC.ed by if (A.res < M.res) {
Adder instance Console.WriteLine("A: " + A.res):
- - A.call();
instance Console.WriteLine("M: " + M.res);
_ _ M.call();
m Sort in ascending }}
order)
. public static void Main(String[] args) {
m First 6 values (new Merger()).call()
}
}

2005/09/19-21 Peter Andersen 38

Merger

}

class Merger: Coroutine {

Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {
—» A.call(); M.call();
for (int i1=0; 1<6; 1++){
if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();
} else {
Console.WriteLine("M: " + M.res);
M.call();

}
} }
public static void Main(String[] args) {
—p (new Merger()).call()
}

2005/09/19-21

Peter Andersen

Go back to coroutine implementation

Caller link (back-link) —

initially self

Method
invocation

Do
L

merger*

current

Coroutine

39

] _ Go back to coroutine implementation

Adder

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {
start = s;
}
void compute(int V){
—» res = V+V;
—p suspend();
compute(V+1);
}

— public override void Do() {
—) compute(start);

}

}

Call() is basically =~ merger*
just a swap of two
pointers

2005/09/19-21 Peter Andersen 40

] _ Go back to coroutine implementation

Merger

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {
A.call(); = M.call();
for (int i1=0; 1<6; 1++){
if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();
} else {
Console.WriteLine("M: " + M.res);

M.call();
} suspend() is also

} basically just a swap
} of two pointers .
public static void Main(String[] args) { cunront.

(new Merger()).call() *
}

>~ merger*

}

2005/09/19-21 Peter Andersen 41

] _ Go back to coroutine implementation

Multiplier

class Multiplier: Coroutine {

public int res;

int start;

public Multiplier(int s) {

start = s;

}

void compute(int V){
- res = V*V;
—»suspend();

compute(V+1);

}
— public override void Do() {

—) compute(start);
}
}

current
merger*

2005/09/19-21 Peter Andersen 42

] _ Go back to coroutine implementation

Merger

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {
A.call(); M.call();
— for (int i=0; i<6; i++){
—p if (A.res < M.res) {
—» Console.WriteLine("A: " + A.res);

—» A.call();
} else {
Console.WriteLine("M: " + M.res);
M.call();
}
} Do
) I
public static void Main(String[] args) { current
(new Merger()).call() merger*

}
}

2005/09/19-21 Peter Andersen 43

] _ Go back to coroutine implementation

Adder

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {
start = s;
}
void compute(int V){
—p res = V+V,;
- suspend();
—» compute(V+1);
}
public override void Do() {
compute(start);

}
}

current

merger*

2005/09/19-21 Peter Andersen 44

] _ Go back to coroutine implementation

Merger

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {
A.call(); M.call();
for (int i1=0; 1<6; 1++){
if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();
—» } else {
Console.WriteLine("M: " + M.res);

M.call();
e
}

public static void Main(String[] args) { current
(new Merger()).call()

merger*

}
}

2005/09/19-21 Peter Andersen 45

	Porting BETA to ROTOR/sscli
	ROTOR RFP II
	[Re 1-2] BETA.Net status
	[Re 1-2] BETA.Net status
	[Re 3] Bootstrapped compiler
	[Re 3] Compiler statistics
	[Re 3] Why compiler slow?
	[Re 3] Bootstrapped compiler
	[Re 5]: Coroutines in C#�
	[Re 5] Current impl. of class Coroutine
	[Re 5] Current impl. of Coroutine.swap()
	[Re 5] Coroutine problems?
	[Re 5] Coroutine support in .NET/ROTOR?
	[Re 5] Comparison with C# 2.0 yield
	[Re 5] P/Invoke of WIN32 Fibers
	[Re 5] ROTOR extension?
	[Re 5] pre-vm
	[Re 5] pre-vm: coroutines
	[Re 5] pre-vm: implementation
	[Re 5] pre-vm: preemptive scheduling
	[Re 5] pre-vm: synchronization and I/O
	[Re 5] Coroutines: status
	[Re 5] Coroutines: status
	Future plans
	Contacts:
	Appendices
	App. A: BETA Language Mapping
	App. A: BETA example use
	App. A: BETA vs. CLR/CLS
	App. A: BETA.Net/Rotor Challenges
	App. A: Mapping patterns: nested classes
	App. A: Use of add as a class:
	App. A: Use of add as a method
	App. A: Not described here…
	App. B: Coroutines in C#
	App. B: Example: Adder
	App. B: Example: Multiplier
	App. B: Merger

