The Mjglner BETA System

Mjaglner BETA System Tutorial

Mjelner Informatics Report
MIA 94-24(1.3)
August 1996

Copyright © 1994-96 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Introduction

This manual is a tutorial on the Mjginer BETA System. The tutorial gives an intro-
duction to the Mjglner BETA System environment to someone who already knows
how to program in another (object-oriented) language and want to know how to do it
in BETA.

Often a hidden strength of a language lies in the available libraries and the ease with
which it can interact with the operating system or other software.

We present a sequence of tutorial programs designed to teach the essentials of BETA
programming. The programs start with trivial objectives like printing out “Hello
world” and doing arithmetic and gradually cover things like input/output, files, arrays,
procedures, objects, containers, GUI, and persistence.

How to install the Mjalner BETA System, call the compiler, etc., will not be de-
scribed in this tutorial. This information can be found the system manuals [MIA 90-
2], [MIA 90-4], and [MIA 90-6].

Most of the tutorial programs developed in this tutorial, are supplied along with the
Mjglner BETA Systeminthet ut ori al demo directory.

Although it is not necessary, it will be an advantage for the reader to be familiar with
the basic concepts of the BETA language. The BETA Language Introduction [MIA
94-26] gives an introduction to the BETA language. The BETA Book [Madsen 93] is
the main reference for the BETA language and every programmer with intend to use
BETA extensively should read this book.

Acknowledgment

This tutorial is based on a set of tutorial notes written by Jean Vaucher, Professeur
dinformatique, Universite de Montreal, on sabbatical at CRIM, November 1993.
Mjglner Informatics are grateful to Jean Vaucher for taking the initiative in writing
the first BETA tutorial notes. By permission of Jean Vaucher, we have adopted these
notes for this tutorial and extended them with more sections containing examples on
repetitions, texts, containers, persistence, and GUI programming.

Mjglner BETA System Tutorial

Contents
1 O HETOWOI . ..o 1
2 SIMpleTypesand OULPULuuieiie it eaes 3
3 ArthmetiC and EXPreSSIONS.ttt eaes 6
Bl CONSLANES. . .ottt 6
3.2 BEVAUBLIONS. ...t 6
4 Multiplication Tableo 9
5 Loopsand FUNCLIONS. ...ttt e e e aaeaaeas 13
6 Assignment and Procedure Calls...........ooiriiiiiii 15
7 Patternsand Variables.oouiuiiii 19
7.1 Patternsand Variables.ooiiiiiii 19
7.2 ATIDUIE ACCESS. ...t 20
8 DynamiC Dala SIIUCKUIES.e et eeaenaas 22
8.l PrIMITIVE TY S, . ettt 25
O REPELITIONS (ATTAYS). . ettt ettt et et ettt ettt aeeaas 26
9.1 Multidimensional REPELITIONS.ouiuieiiiii e 28
O T =S 30
10.1 Command-line argumMENTS.ouineiiiii e 31
10.2 Storing Charactersin aRepetition..........oooeiiiiiiiiiiii e, 33
T I 1 =i (0] Y2 35
12 Text ManipUlation.oueiei e e e e e e ee e 37
12.1 Advanced Formatted Input and OQULPULceiviiiiiiiiiiieieene, 39
G @0 | = [1= o I o =Y/ 41
1 0 L 41
13.2 HashTable EXamMPIec.voneiiii e 42
O o= o1 o T 45
14.1 ExamplesUSINg EXCEPtiONcoviviiiiiiii e 45
15 Accessto External Functionsand Data............ccovviieiiiiiiiiiiiii e 47
151 EXAMPI . 47
16 Usingthe Persistence Library........c.oooeiiiiiiiii e 51
17 Graphical User Interfaceoooiviiiii e 53
170 GUIEBNV. .. 53
17.2 MOUTENV Lo 58
18 CONCUITENE LIDrary e ee e 60
18,1 EXAMPI .. i 60
18.2 Concurrency and User Interface Environments...............c.oeeveinnnnn. 62
19 The Fragment Sy stem.uiei e eae e 67
S 1= g = o= 69
R O ENICES. . .t 73

Hello World iii

List of Programs

Program 1: HelloWorld.beto 1
Program 2.1: SimpleTypesWIithErrorshet..........c.oviii i 3
Program 2.2: SImpleTypes.bet 5
Program 3: EXPIOreTYPES.DEL. ... 7
Program 4.1: MultiplicationL.bet..........ccoooiiiii 10
Program 4.2; Multiplication2.bet. ... 12
Program 5: SQUareROOL.DEL.c.oiiii i 14
Program 6: MultipleAssigment.bet ..o 17
Program 8: StaticANADYNamMIC.bEL.oeiiii e 24
Program 9.1: QUICkSort.bet..........coooi i 28
Program 9.2: MultiplicationTable.betcoiiiiii e 29
Program 10.1: CountChar.Det...........coiii i 31
Program 10.2: CountCharL.bet.........ccooiniiiii e 32
Program 10.3: CountChar2.betcooiiii i 33
Program 11: LiStDir.beto 36
Program 12.1: FIleCoUNt.DEL.o e 38
Program 12.2: StaticAndDynamic2.betccooiiiiii 40
Program 13.1: SaveListDir.beto 42
Program 13.2: DirTablebet... ... 43
Program 15: Person.bet.ooiie i 50
Program 16.1: DirList.het.o 51
Program 16.2: SaveListDIir2.bel...... ..o 51
Program 16.3: SaveListDir3.06t.ccovii i 52
Program 16.4: GetListDIir.bet..........ccoooiiii 52
Program 17.1: TextEditor.Det. ... 56
Program 17.2: HEllO.DEt ... 59
Program 17.3: Scale.bet ... 59
Program 18.1: Seconds.bet..........cooiiiii 61
Program 18.2: CIOCK.DEL.ot e 62
Program 18.3: ClockTextEditor.bet...............oooiiii e, 65
Program 19.1: HelloWorld.beto 67
Program 19.2: Helloworld with filled program Slot............cooooiiiiiii 68
Program 19.3: putBoxed.bet 68
Program 19.4: HelloWorld.bet 68
Program 19.5: Helloworld with filled programand LIB Slot..........cooviieinnnnn. 69
Program 19.6: putBoxed.bet, 70
Program 19.7: putBoxedBody.Det....... ... 70
Program 19.8: HelloOWorld.betcooiini e, 70

Program 19.9: HelloWorld with filled programand LIB Slot................c.ooveeee. 70

1 Hello World

We start with the simplest of all programs that prints the statement “Hello World” on
the screen.

ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv’
---- program descriptor ----
(#

(* Hell owrld. bet:

*

* Aut hor: J. Vaucher
*
* Pur pose:
* This is the sinplest program possible.
* Being able to conpile and run it shows that the
* conpil er exists and that PATHS and ALI ASES have been
* correctly set. It also brings out “meta-progranmm ng”
* considerations like the “fragment” system
*
)
do
"Hello world !''" -> putline
#)

Program 1: HelloWorld.bet

Thisillustrates the basic syntax of aBETA program:

(#

<decl arati ons>
do

<st at ement s>
#)

In this case, there are no declarations and the statement part is merely a simple output
statement.

The bulk of the program text isin the form of a comment traditionally delimited by (*
and *) . In the BETA book [Madsen 93], comments are shown delimited by { and }
but the compiler only recognizes the form shown in Program 1.

The first two lines of the program are not strictly BETA (but are essential for correct
compilation). They are part of the fragment specification language that describes in-
ter-relationships between the various BETA modules that compose a complete pro-
gram. A brief introduction of the fragment system is given in the last section of this
tutorial.

Thefirst line formally identifies the library environment required by our program; in
other words, it gives the file path name of the BETA module where all the basic func-
tions and procedures (such as put | i ne) have been defined. In this respect, it acts
much like the #i ncl ude <stdi 0. h> statement seen at the beginning of most C pro-
grams.

The body of the program is a simple procedure call to do output. It is interesting to
compare the syntax of BETA's procedure calls with that of other languages:

Ct++: cout << "Hello world !";
C printf("Hello world I'\n");
BETA: "Hello world !'' -> putline;

Declarations and
Statements

betaenv

Screen Output

Mjglner BETA System Tutorial

More information

In BETA, the syntax of procedure calls is made identical to that of simple assign-
ments (or message passing). Evaluation is strictly Ieft to right: parameters are evalu-
ated; then passed (- >) to an object put | i ne whose role isto output them to the screen.
Finally, note that text constants are delimited by apostrophes (“* ™).

The bet aenv library and many of the other libraries used in this tutorial are docu-
mented in the Mjginer BETA System manual [MIA 90-8].

2 Simple Types and Output

In our next program we declare variables of the 4 basic types defined in BETA:
i nteger, real, char and bool ean. Values are assigned to these variables and they
are written out. The first version of our program is shown in Program 2.1.

ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv' Simple types
---- program descriptor ----

(***

*

* SinpleTypesl.bet: A programto show handling of sinple types
*

* Note: this programw |l not compile
*

***)

(#1,j,k: @nteger;

X,¥,z: @eal;
c. @har;
bl, b2: @ool ean;
do 111->i;
10->j -> k;
i +3* j->k ;
3. 1415- >x;
10e5- >y;
"X ->c;
true->bl;
new i ne;
"Printing out integers'->putline;
" 1 = '->puttext; i->putint; newine;
' J = '->puttext; j->putint; newine;
'k = '->puttext; k->putint; newine;
new i ne;
"Printing out reals: '->putline;
"X "->puttext; x->putreal; newine;

'"->puttext; y->putreal; newine;
'"->puttext; z->putreal; newine;

y
z

new i ne;

"Now for a character, C="'->puttext; C >Put;
'"" and as a integer: '->puttext;

C->putint; newine;

new i ne;

"Printing out bool eans: '->putline;

' Bl ="'->puttext; bl->putbool ean; new ine;

' B2 ="'->puttext; b2->putbool ean; newl ine; newine;
"Now for something very Clike.'->putline;

" ' A Y+ 3->put: ' ->puttext;

"A + 3->put;

new i ne;

#)
Program 2.1: SimpleTypesWithErrorsbet

3

Mjglner BETA System Tutorial

Static Variables

Screen Output

Type
Compatibility

Static Semantic
Errors

Again, one notes the initial fragment ORI G N statement, a comment, and then the pro-
gram.

The declarations are Pascal-like with the addition of the @character. In BETA, the
same declaration syntax will be used for types, variables, classes and procedures. In
this context, the @denotes a static variable declaration whereas a declaration without
the @corresponds to a type declaration.

The first few statements after the do show arithmetic and assignment. Arithmetic ex-
pressions follow convention; the usua operators (+,- ,* , / (or div) and nod) are
provided. Assignment goes left to right following the arrow and multiple assignment
is alowed.

The next few lines show the syntax of real, character and boolean constants. Note that
characters use the same delimiters as text strings.

In the remainder of the program we do output. The procedures used are:

* newine: skipsto anew line

* puttext: writes atext

e putline: same asput t ext followed by newl i ne
* putreal: outputs areal

* put: outputs a character

* putbool ean: outputsaboolean

Characters are type compatible with integers and can be used interchangeably in
expressions. An example of thisis shown at the end of the program.

When we try to compile Sinpl eTypesWthErrors. bet, we get the following
semantic error message:

put r eal
***x*Name i s not decl ared

put bool ean
*****Name i s not declared

There is aso a complete listing of the program text with the same error messages in
Si npl eTypesWt hErrors. | st to help localize the errors. In this case the error is due
to the fact that putreal isnot in the standard environment. putreal isin alibrary
that must be included in the program!. Likewise put bool ean isin the text Utils
library.

The Mjginer BETA System comes with alibrary supporting a wide range of input and
output for numbers (integers, based integers, reals, etc.) caled nunberi o. In order to
print reals on the screen, this library must be included. A library isincluded using a
fragment | NCLUDE statement:

1 putreal isnotinthe standard environment in order to minimize the size of the resulting binary
excutable for smple programs that only uses the basic environment. nunber i o contains
operations like, put /get r eal and put /get based.

Simple Types and Output

ORIA@ N ' ~bet a/ basi clib/vl. 5/ betaenv';
| NCLUDE ' ~bet a/ basi cli b/ vl.5/ nunberio';
| NCLUDE ' ~beta/basiclib/vl.5/textUils';
---- program descriptor ----
(#

i,j,k: @nteger

< 6'ri gi nal program >
.
Program 2.2: SimpleTypes.bet

And the results are shown below.

Printing out integers
[111

' 10

141

J
k

Printing out reals:
3. 141500
1000000. 000000
0. 000000

X
y
z
Now for a character, C="X"' and as a integer: 88
Printing out bool eans:

Bl true
B2 fal se

Now for sonething very C-like.
"A'+ 3->put: D

Simple types with
numberio

Based Integers

Control
Characters

Operator priority

Math Library

3 Arithmetic and Expressions

We will start with the ssmplest of all expressions:

3.1 Constants
BETA accepts constants in the usual formats:
Integer

1, 1666, 0, -12

There is also aformat (<base>X<nunber >) for integers in other bases. All the follow-
ing constants represents 11:

2x1011, 3x102, 16xB, O0xb, 11
Predefined constants exist for MaxI nt andM nl nt in bet aenv.
Reals
3.14159, 3E9 , 3.14E-9
Predefined constants exist for MaxReal and M nReal inthenat h library.
Booleans
true, false
Text and Characters

‘a', 'ABC

» acharacter isatext of length 1.

» the text delimiter character can be represented by doubling: ' ' "' H ' "', is the
text ' Hi '

» following the C convention, many useful control characters can be introduced
by using the backslash: "\t for tabulator and ' \ n' for newline.

3.2 Evaluations

In BETA, the term evaluation is used to refer to expressions, assignment statements
and procedure calls.

For evaluations arithmetic, boolean and relational operators are provided. The opera-
tor precedence is similar to C with the AND and OR operators considered to be on a par
with * and + respectively. This means that parentheses will often be needed to obtain
the desired result. The priorities are shown below:

Relative Priority Class Operators

least relational =, <>, >, >, <, <=
additive +, -, Or, Xor
multiplication *, [, div), mod, and

highest unary not, -, +

When areal value is assigned to an integer the fractional part is removed irrespective
of the sign of the value. Various functions for manipulating reas, including rounding,
| og, | 0g10, sin, cos, tanh, sqrt, and power are available in the mat h library. This
library also contains predefined constants such as Pl , e, pi hal f (PI/2), | og2e (log(e)
to base 2), | og10e (log(e) to base 10), | n2 (natural log of 2), etc.

6

Arithmetic and Expressions

The max, ni n and abs functions are not generic; they do not work properly with reals
since they will convert input values to integers. Instead the functions f max, f mi n and
f abs inthemat h library could be used.

Finally, since characters are type compatible with integers and there is no type control
at thislevel, some interesting evaluations may be done, such as:

(i+1) * (*a * i) / 4.33->putint

The program shown in Program 3 shows some of the things discussed here. Firgt, it
includes both the nunber i o and the mat h fragments required for the numeric work. It
also shows our first procedure, t ab, introduced to help simplify formatting the output.

ORIG N ' ~bet a/ basiclib/vl.5/betaenv';

| NCLUDE ' ~betal/basiclib/vl.5/ nunberio';
| NCLUDE ' ~bet a/ basiclib/vl.5/ math';
---- program descriptor ----

(#

(* p3.bet: Exploring types and functions

***)

i,j,k: @nteger;
X,¥,z: @eal;
tab: (# do ' "->puttext #);

do '\ nEnvironment constants: \n\n'->puttext
"\t Maxint = '->puttext; naxint->putint;

"\n\t Mnint = "'->puttext; mnint->putint;

"\n\'t MaxReal = '->puttext; nmaxreal ->putreal (# do exp->style #);
"\n\'t MnReal = '->puttext; mnreal->putreal (# do exp->style #);
3->i; -10->j;

"\n\n *** Sinple functions *** \n'->puttext;

"\n I J max(l,J) mn(l,J) abs(J) \n'->puttext;

tab ;

i ->putint; tab;

j->putint; tab;
(i,j)->max->putint; tab; tab;
(i,j)->m n->putint; tab; tab;

j - >abs->puti nt;

"\n\n *** Reals ***\n'->puttext;

"\ nX Y fmax(X, Y) fmn(XY) fabs(-

3.6) \n'->puttext;
3. 01->x; 3. 78->y;
X->putreal; tab;
y->putreal; tab;
(x,y)->fmax->putreal ; tab; tab;
(x,y)->fmn->putreal; tab; tab;
- 3. 6->f abs- >putreal ;
"\n\nPi = "'->puttext; pi->putreal;
"\'ncos(Pi/4) ="'->puttext;
(Pi div 4)->cos->putreal;
"\n\nM xing types: (i+1) * (‘'a""' * i) [4.33 ->

put Text; ' = '->putText,
(i+1) * ("a" * i) [/ 4.33->putint;
new i ne;

#)
Program 3: ExploreTypes.bet

In BETA, procedures, types and objects are treated in a unified manner as variations
of asingle concept, the pattern. The general syntax for such a pattern declaration is:

<nanes>: <descri ptor>

Type
compatibility

Pattern

Mjglner BETA System Tutorial

Procedure

In the simplest case, the object descriptor is what we have called a block which can
contain declarations and imperatives. In the case of procedures which need parame-
ters or functions which return results, there can also be input and output parameters
but we leave that for later.

In our example, t ab is defined by:

tab: (# do ' ' -> puttext #);

This has neither parameters nor a result. t ab merely stands for the more lengthy
statement which outputs a string of 4 blanks. Contrast this declarations with that of
the variables for i, j, .., z which use @to indicate that space is to be reserved for the
variables.

Returning to our program, we first print out the maxi nt and ni ni nt constants defined
for both integers and reals. Note the use of control characters, e.g. '\ n' inthetitlesto
do some formatting.

Next, we show the use of the nmi n, max and abs functions on integers. We also use the
t ab procedure to space out the printed results.

After that we apply thef ni n, f max and f abs to reals.

Then we print PI , one of the built-in constants defined in mat h, as well as the value of
cos(45 degrees) . Note that angles must be expressed as radians.

To finish off, there is amixed evaluation with integers, booleans, characters and real.
The results of executing Expl or eTypes are shown below:

Envi ronnent constants:

Maxl nt = 2147483647
Mnlnt = -2147483648
MaxReal = 1. 797693e+308
M nReal = 2. 225074e- 308

*** Sinple functions ***

I J max(1,J) mn(l,J) abs(Jd)
3 -10 3 -10 10

* k% % Reals * k% %

X Y fmax(X Y) frmin(XY) fabs(-3.6)
3. 010000 3. 780000 3. 780000 3. 010000 3. 600000

Pi = 3.141593
cos(Pi/4) = 0.707107

M xing types: (i+1) * (‘a" * i) [/ 4.33 = 268

For more sophisticated examples on use of reals and math functions, the reader should
look at the demonstrations programs:

* realtest. bet
e putreals. bet
These are located in the reals demo directory of basi cl i b.

4 Multiplication Table

In this section, we will take on the simple task of printing out a multiplication table of
the integers from 1 to 9. For the purpose of illustration we shall introduce the follow-
ing concepts:

* procedure with parameters
e thefor imperative
e theif imperative

for printing in fixed width columns. We shall also show the correct BETA way to do
formatted output, involving introducing an extension to a virtual pattern.

The f or imperative

In BETA, al syntactic structures have a similar form of delimiters with opening and
closing parentheses and the f or is no exception:

Block: (# ... #)
Comment: (* . *)
For:(for ... for)

In opposition to other languages where the f or can count up or down and the step can
be varied, in BETA only a simple version exists going from 1 to N where N is an ex-
pression (or evaluation to use the BETA terminology). This follows the BETA mini-
malist philosophy of providing the strict minimum combined with powerful extension
mechanisms.

More precisely, there are two forms of the f or, depending on whether one wants to
have access to the counting variable or not. These are:

(for <eval uation> repeat <inperatives> for)
and

(for <var> : <eval uati on> repeat <inperatives> for)

Both forms will be used in this section. Note that the loop variable <var > acts as alo-
cally defined variable and is only accessible inside the f or imperative. Thus the loop
variable <var > need not be declared elsewhere.

Neglecting labels, the body of our program could have the following form:

(for i:9 repeat
(for j:9 repeat
i*j -> putint;
2 -> tab;
for);
new i ne;
for);

Where t ab is a procedure that outputs blanks to separate the integers printed with
putint. In contrast with previous versions of t ab which printed a fixed number of
blanks, here we provide it with a parameter N to indicate the number of spaces to
write. Above, in2 -> t ab, wewant to print out 2 spaces.

In BETA, parameters are considered to be local variables which are assigned values
from an input list before executing the procedure body. Hence they are declared the
same way as any other local variable. The number of actual parameters that must be
supplied and which local variables will receive these values is specified by an ent er
list. t ab can be defined as follows:

Two kinds of f or

Parameter list

10 Mjglner BETA System Tutorial

tab: (# N @ nteger
enter N
do (for N repeat
#);

The enter list comes after the declarations and before the do part.

-> put for)

Hereisthe program:

ORIG N ' ~bet a/ basi clib/vl. 5/ betaenv'
---- program descriptor ----

(#
(* Multiplication Table
*

* (bjectives:
* - use the FOR inperative
* - introduce a paraneterized procedure

*)
tab: (# N @ nteger

enter N
do (for Nrepeat ' ' -> put for)
#);
do "\n\t** Multiplication Table ** \n\n'-> puttext;
4 -> tab;
(for i: 9 repeat

i -> putint; 2->tab;
for);
new i ne; new i ne;
(for i: 9 repeat
i->Putint; 3 -> tab;
(for j: 9 repeat
i *j->putint ;
2 -> tab;
for);
new i ne
for)
#)

Program 4.1: Multiplicationl.bet

Since this program uses no reals, we have used the same simplified fragment state-
ments that we used in our first program. The results are shown below:

** Multiplication Table **

=
N

3 45 6 7 8 9

2 3 45 6 7 8 9

4 6 8 10 12 14 16 18

6 9 12 15 18 21 24 27

8 12 16 20 24 28 32 36
15 20 25 30 35 40 45

12 18 24 30 36 42 48 54

14 21 28 35 42 49 56 63

16 24 32 40 48 56 64 72

18 27 36 45 54 63 72 81

In this output, the columns do not line up because some of the integers use require a
single digit and others require 2 and put i nt prints with minimum space.

To overcome this, we will write a ssmple procedure to output an integer in afield of
width w. By simple, we mean that it will only work with positive integers less than
1000. To determine the number of digits required to print an integer we use the i f
imperative. Thei f imperative has two forms:

Co~NoOOR~WNE
Co~NOOR~WNE
-

o

Multiplication Table 11

(if <Exp> then Simple i f
<l nperatives>
el se
<l nperatives>
i)
and

(if <BExp> General i f
/1l <Exp> then <I|nperatives>
/1 <Exp> then <l nperatives>
[l <Exp> then <lnperatives>

elsé“
<l nperatives>
if);
A first crack at the code to compute ND the number of digitsin anintegeri is:

(if true
/1 i <10 then 1 -> ND
/1l i < 100 then 2 -> ND
else 3 -> ND
if)
This is coded along the lines of the standardi f ..el se if..else if...pattern of other
languages such as Pascal or Simula but is not quite correct according to the strict
definition of thei f imperative, because the i f does not specify that the aternatives
will be evaluated in a sequential manner. Thereforeif 1 = 5, ND could receive either 1
or 2 asavalue. Although the code would probably work, it should be written as:

(if true
/1 i <10 then 1 -> ND
/1 (i>=10) and (i<100) then 2 -> ND
else 3 -> ND
if)
Remember that the parentheses are required in the second alternative due to the opera-
tor priorities.

Now we can design a procedure, (N, W -> Quti nt, that will print an integer Nright Procedure
justified in afield of wspaces wide. This procedure will require alist of 2 parameters ~ arguments
when it is called.

Qutint:

(# NNW @nteger;

enter (N, W

do (if true
/1 N<10 then 1 -> ND
/1 (N>=10) and (N<100) then 2 -> ND

else 3 -> ND

i)
ND -> tab;
N -> putint;

#);

The complete modified program is given below and the output follows.

ORI G N ' ~bet a/ basi clib/vl. 5/ betaenv'
---- program descriptor ----
(#

(* Multiplication Table 2

* (bjectives:
* - use the IF and FOR inperatives
* - use procedures & paraneters

*)
tab: (# N @nteger;

12 Mjglner BETA System Tutorial

enter N
do (for Nrepeat ' ' -> Put for)
#)]

Qutint:

(# NW ND: @nteger;

enter (N, W

do (if true
/1 N<10 then 1 -> ND
/1 (N>=10) and (N<100) then 2 -> ND

else 3 -> ND

if);
WND -> tab;
N -> putint;

#)]

do
"\n\t** Multiplication Table ** \n\n'-> puttext;

4 -> tab;

(for i: 10 repeat
(i,4) -> Qutint;

for);

new i ne; new i ne;

(for i: 10 repeat
(i,4) -> Qutint;
(for j: 10 repeat

(i*j,4) -> Qutint;
for);
new i ne
for)
#)

Program 4.2: Multiplication2.bet

and the results:
** Multiplication Table **

[

2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10
6 8§ 10 12 14 16 18 20
9 12 15 18 21 24 27 30
12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80
18 27 36 45 54 63 72 81 90
20 30 40 50 60 70O 80 90 100

Formatted output Finally, the way formatted output is done in the demo programs distributed with the
Mjelner BETA System. It involves extending the virtual pattern f or mat defined in
puti nt. Thusthe cut I nt procedure of Program 4.1 should be rewritten as follows:

QUOWO~NOUITAWNE
QUOWO~NOUITAWNE
oo N

=
=

Qutint:
(# NN W: @nteger;
enter (N W
do N -> screen.putint(# format:: (# do W-> width #)#)
#)

and the results would be identical to those obtained previously. The latter procedure
would be much more robust, accepting any positive or negative integer value.
Program Multiplication3.bet uses this procedure. See also Section 12.1.

5 Loops and Functions

In this section, we take on the task of writing a function that computes square roots.
Thiswill lead us to consider conditional looping and the definitions of functions, or in
BETA terms, patterns that can return values.

To compute a square root we will use Newton's algorithm where the computation is
done by successive approximations until the error isless than a preset level (epsilon).

The usual way to program this involves a while loop. In C, the code to get the root of
x could look like this:

Root = X;

whil e (abs(X-Root**2) > epsilon) {
Root = (Root +X/root) [/ 2;

}

Assuming that X = 100, the calculated values of Root in each iteration will be:

150.5

226. 2401

315. 0255

410. 8404

510. 0326

610. 0001

710. 0000... and the | oop ends.

Surprisingly, there is no while loop in BETA language. BETA is designed with a
more fundamenta (and extensible) feature as the ability to either leave or restart any
labeled imperative. In the basic BETA environment bet aenv, a loop pattern using
these features is defined and can be used like:

X -> Root;

Loop(# while::(# do (X-Root*Root -> fabs) > X/ 10E6 -> val ue #);
do (Root + X/root) / 2 -> root;
#)

A whi |l e loop can also directly be implemented using a labeled imperative with a
restart. The following BETA code is a repeated conditional imperative imple-
mented using alabeled i f with arestart imperative at the end:

X -> Root;
L: (if (X-Root*Root -> fabs) > X/ 10E6 then
0.5 * (Root + X div Root) -> Root;
restart L,
if);
Here, the error, epsilon, is set at one part in a million. The complete program code is
givenin Program 5 below. Here the code for the Square Root has been put in the form
of a procedure which returns a value: that is to say a function. As shown in the exam-
ple, afunction call has the following syntax:

i -> Sgrt -> Res;

We have aready seen the notation <par anet ers> -> <procedur e> wWhereby datais
passed (as parameters) to the procedure object. In BETA, the same syntax is used to
show that results are obtained from Sqrt and passed on to Res.

ORIA@ N ' ~bet al/ basiclib/vl.5/betaenv';
| NCLUDE ' ~bet a/ basi cli b/v1.5/ nunmberi o'
' ~betal/basiclib/vl.5/ math';

13

While loop
in betaenv

While loop using
labeled
imperative and
restart

14 Mjglner BETA System Tutorial

---- program descriptor ----
(#

(* SquareRoot. bet: Exploring functions
* + conditional | oops
*)

Res: @ eal

Sgrt:

(# X, Root: @eal;

enter X

do X -> Root;

Loop(# whil e:
(# do (X-Root*Root -> fabs) > X/ 10E6 -> value #)

do (Root + X/root) / 2 -> root;
#)

exit Root

#);

t ab:
(# N @nteger;
enter N
do (for Nrepeat ' '-> put for)
#);

do "\n\t ** Functions and variables **\n' -> putline;
I sqrt(i) ' -> putline;

(for i:10 repeat
i ->Sgrt -> Res;
i ->putint(# format:: (# do 2 -> wi dt h#)#);
3-> tab;
Res -> putreal
new i ne;

for)

Program 5: SquareRoot.bet

Function results The declaration of Sqrt shows an exi t list which defines the list of values obtained
after executing the body of the function. In this case, there is only one value, areadl,
but BETA functions could return multiple results.

The output obtained upon execution are shown below.

** Functions and vari abl es **

sqrt (i)

. 000000
. 414214
. 732051
. 000000
. 236068
. 449490
. 645751
. 828427
. 000000
. 162278

QUOWO~NOUAWNE —
WWNNNNNRP PP

=

6 Assignment and Procedure Calls

We have previously mentioned that BETA strives for minimalism along with orthog-
onality. So far we have hidden this fact by programming in a standard fashion and
presenting the programs with traditional concepts such as variables, functions, as-
signment statements, etc. Now we shall begin the study of BETA’s particularities by
considering assignment.

We have already noticed that BETA evaluates expressions left to right and uses an
unusual assignment operator, - >. Our examples have shown simple examples of as-
signment such as:

i+l ->i;
In BETA, we can do more: assignment is defined to operate on lists of values with
single value assignment being a special case. Thus we can say:
(1,2,3) -> (i,j.,k);
Which has the same effect as the series of simple assignments:
1->i; 2->j; 3->Kk;
We can also cascade such assignments:
(a,b,c) -> (mn,0) ->(X,y,2) ;

If we just consider the first itemsin the lists, the above statement means that we take
the value of a and passit on to m then we take the value of mand we passit on to x.

If the number or types of the itemsin lists do not match, an error is signaled:
(111, 222) ->i;

or
"string' ->i; (* where i is an integer *)

So far, thisis all pretty obvious but, in BETA, the destination of an assignment is not
restricted to being a ssimple variable or a list of such variables; the target of an as-
signment can also be a more complex object with an ent er list. In that case, assign-
ment takes place between the values in the list on the left and the variables named in
thetarget’sent er list.

If both the source S and target T of an assignment are complex objects, the assign-
ment:

S->T,
becomes a multiple assignment between the exit list of s, (01, .., G, ..) and the
enter lissof T(11, .,1i,.). Inaddition, the do part of S is executed before this mul-

tiple assignment and the do part of T is executed after. In other words, this happens:
1. Executedo of S
2.(ot,.0.)->(1,.1i.)
3. Executedo of T
For cascaded assignments:
S->T->U
We have:
1. Execute S

15

Evaluations

Complex
evaluations

16

Mjglner BETA System Tutorial

Constants

Procedure and
type declarations

Local state

2. Output of S ->input of T
3. Execute T
4. Output of T - > input of U
5. Execute U

Note that the body of each object mentioned in the assignment is executed once. Of
course, defining assignment between complex structures or objects in terms of as-
signment between individual exit expressions and enter variables is a recursive
explanation which eventually leads to assignment between primitive objects like inte-
gers which has an obvious interpretation in terms of machine code. This is described
in great detail in section 5.8 of the BETA Book.

Note that absence of a do part has no effect on assignment: it is equivalent to a null
statement; but absence of anent er or and exi t part has great importance. An object
without an exi t part cannot appear as a source in an assignment. Similarly, an object
without an ent er cannot appear as a target.

This property is exploited in the mat h fragment to define read-only objects or con-
stants. These have only an exi t list:

e: (# exit 2.7182818284590452354 #);
Pi: (# exit 3.14159265358979323846 #);

BETA'’s generalized definition of assignment means that there is no fundamental dif-
ference between assignments and procedure calls. Following from this argument is
the fact that procedure declarations and type declarations will be syntactically identi-
cal. Toillustrate this, consider the following declarations. The first is a type definition
for a complex numbers with two r eal attributes. The second is a procedure that adds
reals numbers.

complex: (# Re,Im @eal;
enter (Re,Im
exit (Re,Im
#);

add: (# A B @eal;
enter (A B)
exit A+B
#)

These definitions have been purposely made alike. There is no do part in either; the
computation for add being done by an expression in the exi t list. Each has 2 local
real attributes. Each has an enter list and an exit list, meaning that objects of the type
conpl ex and those of the type add can be assigned values and can provide values and
thus can be used on both sides of an assignment statement. For example:

(1.0, 3.3) -> complex -> (x,Y);

(1.0, 3.3) -> add -> x;

In the case of conpl ex, the output value is an exact duplicate of its local state and of
the input values: conpl ex objects will be used mainly for their storage potential (as
variables). With add, the output value is computed from the state (input) values: add
objects are more useful for this computational aspect. In actual fact, conpl ex would
seldom be used directly in such an assignment; it would more properly be used as a
model for variables which would in turn be used in assignments.

(# cl,c2: @onplex;

do (1.0, 3.3) -> c1;
cl -> c2;

#)

The point, however, isthat BETA does not distinguish between types and functions. It
considers both as examples of a more fundamental concept: the object, which can be
used for many things depending on how the programmer chooses to define and useit.

Assignment and Procedure Calls

The program below shows the examples that we have talked about:

ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv’
---- program descriptor ----
(#
(* Mul tiple assignnent and function calls *)

i,j,k : @nteger;
Ni nes: (# exit 99999 #); (* Constant *)

conplex: (# Re,Im @nteger;
enter (Re,Im
exi (Re, 1M
#)
add: (# A B: @nteger;
enter (A B)
exit A+B
#);

do
" Exanpl es using multiple assignment and function calls' ->
putline; newine;
"Qutputting a constant: Nines='"'
Ni nes -> putint;
new i ne; new i ne;

-> puttext;

'(1,2,3) -> (i,j,k); "-> putline; newine;

(1,2,3) -> (i,j,k);

" I="'->puttext; i -> putint;

', J='-> puttext; | -> putint;

", K='-> puttext; Kk -> putint; newine;
newline; '"(i,j) -> (j,i): ' -> puttext;
(i 3) ->(,1); _ _

" I="->puttext; i -> putint;

', J='-> puttext; | -> putint; newine;

"Note that (x,y) -> (y,x) doesn''t inply swap semantics.' ->
putline; newine;

(*** More exanples ***)' -> putline; newine;

(111,999) -> conplex -> (i,j);
(111,999) -> add -> k :

"I="->puttext; i -> putint;
', J='-> puttext; | -> putint;

", K='-> puttext; Kk -> putint; newine;
#)

Program 6: MultipleAssigment.bet

Now for its output:

Exanmpl es using nultiple assignment and function calls
Qut putting a constant: N nes= 99999

(1,2,3) -> (i.j,k);

=1, J=2, K= 3

(i§) ->(j,i): =1, J=1

18

Mjglner BETA System Tutorial

Note that (x,y) -> (y,x) doesn't
(*** More exanples ***)

=111, J= 999, K= 1110

i mply swap semantics.

7 Patterns and Variables

In this section, we get a bit more formal with the BETA way of expressing object-ori-
ented concepts. This section treats topics from chapter 3 of the BETA Book but with a
dightly different approach.

Often object-oriented concepts are summarized as follows:

1) Objects are meant to represent the things that we see or talk about in the real
world.

2) Objects have properties. These are often divided between state (attributes) and
potential actions (services, methods or scripts).

3) Objects which have the same attributes and behave the same way are said to be-
long to the same class. A class definition specifies the attributes and actions
common to all objects of the same class. The objects described by a class are
said to be instances of that class.

4) Often it is useful to introduce the notion of class hierarchy to reflect various
levels of similarity. The specification mechanism which allows incremental de-
scription of the similarities at each level is called inheritance.

5) Additionally, some languages model the fact that individual objects can operate
in parallel. These active objects are sometimes called agents, processes or actors.

Actualy, in this section, we will only talk about points 2 and 3. Point 1 isincluded for
completeness and point 4 is not covered in this tutorial (see the BETA language in-
troduction [MIA 94-26] or the BETA book [Madsen 93]). Point 5 will be covered
later.

In BETA, objects are described by a syntactic construct called an object-descriptor
(or descriptor for short). This has the form:

(# ... #)
and is used to specify the local attributes and actions of an object (or class of objects).

An unusual feature of the BETA object-descriptor (compared to other object-oriented
languages) is that, with ent er and exi t lists, it introduces the notion of value for ob-
jects. The different facets of an object are defined by the various (optional) parts of
the object description:

(# <decl arations>
enter <input list>

do <i nperatives>
exit <output list>
#)

This single concept of descriptor has been used to replace many diverse concepts that
we are familiar with from traditional languages. In particular, it is used for proce-
dures, functions, types, classes, macros and local blocks. These different roles are
achieved by using the descriptor in different contexts, by combining it with other op-
erators or by selective use of the internal parts.

7.1 Patterns and Variables

In BETA, a descriptor can be given a name. Thereafter, the name becomes a short-
hand form for the full description. The association of name and descriptor is written
amongst the declarations and is known as a pattern declaration. It has the following
syntax:

19

Object-oriented
concepts

Inheritance

Concurrency

Descriptor

20

Mjglner BETA System Tutorial

Pattern
declaration

Static variable
declarations

Structural
equivalence

Structured data

Local function

<pattern-nane>: <prefix> <descriptor>

Thereafter, the pattern name or the descriptor can be used interchangeably and the
term pattern is used to mean either form. pr ef i x is an optional name of a pattern that
pat t er n- nane inherits from.

Aswe have seen previously, variable declarations are characterized by the @token:
<vari abl e- nanes>. @pattern>
Examples:

PONT: (# X, Y: @eal;
enter (XY)

exit (XY)

#)

P1, P2: @Poi nt;

P3: @# X, Y. @eal;

enter (X, Y) exit (XY)
#)

P1 and P2 are considered to be objects of the same class. Note also that caseisimma-
terial in BETA: PO NT being the same as Pol Nt Or poi nt .

Thereafter, the following assignments are allowed:

P1 -> p2;
(0,0) ->pl ->p2 -> p3;

Note that BETA uses structural equivalence in its value assignments and compar-
isons. This is not as strict as in other languages and assignment is possible between
variables of any two patterns with similar enter and exit lists. This was shown
above (with identical lists) and if we define another pattern conpl ex with two reals as
value, assignment will be allowed between Poi nt and conpl ex objects.

Cl: @# Re,Im @eal;
enter (Re, 1M
exit (Re, ImM
#)

7.2 Attribute Access

So far we have concentrated on showing that BETA objects can behave either as
classical data variables or as procedures. The example patterns that we showed often
had local attributes (of primitive types) used either to implement value or to hold
temporary results of computations.

BETA objects aso function as structured (or record) data and the local attributes are
accessible via the traditional dot notation. For the PO NT P1 defined in the previous
section, the examples below show how its local attributes X and Y can be both read
and set directly:

0 ->P1L X 123 -> P1.Y;
P1. X -> putint;

Notice, that thefirst lineis equivalent to: (0, 123) -> P1.

The local attributes can have any type and could be function objects. Below, we use a
modified Poi nt pattern which has a third attribute di st to compute the distance from
the origin.

Point: (# X Y. @eal;
dist: @# exit (X*X + Y*Y) -> sqrt #);

enter (X Y)
exit (XY
#)

P1, P2 : @Point;

Patterns and Variables

21

This third attribute is read-only (because it has no ent er list) but can be consulted
just like x and v:

(3,4) -> P1;
Pl.dist -> putint;(* will print "5" *)

Many object-oriented languages enforce encapsulation by disallowing direct reading
or writing of the local variables and restrict access to the invocation of the local
methods. Smalltalk is the obvious example of this approach but even Simula, where
by default all local data and methods are accessible, introduced a Hidden/Protected
mechanism to allow protection. This is meant to enforce separation of the provided
behavior from the details of implementation.

In the BETA language, there is no provision for hiding the internal details of an ob-
ject. The mechanisms for protection as well as those for modularization and configu-
ration management are relegated to a separate fragment system which is described in
the last section of this tutorial.

Encapsulation

Dynamic
references

Static and
dynamic
references

Reference
operator

8 Dynamic Data Structures

The variables that we have declared so far (with @ are said to be static objects and the
variable names are said to be static references.

Advanced programming requires more than just static data structures. In particular,
list processing is based on the notion of dynamically created objects linked by point-
ers. Recursive procedures also rely on dynamically allocated activation records. More
to the point, objects are generally created on demand with a new operator.

In BETA, pointers or dynamic references as they are called are declared very much as
in C using the * token. Below, we declare r ef A and r ef B to be references to Poi nt
objects whereas the declaration for P1 and P2 cause storage space to be reserved for 2
points and associate (permanently) the names P1 and P2 to those points.

refA, refB: ~Point;
P1, P2: @Poi nt;

Initially, r ef A and r ef B point nowhere and have the value NONE whereas P1 and P2
designate real live points. Thus, we can assign datato P1 but not tor ef A.

P1 -> P2; (* OK *)

PL -> refA (* run-time error because refA is NONE *)
This seems normal but reread these two imperatives carefully. Anyone having used
pointers in other languages should notice that the BETA pointer concept is a little dif-
ferent that most other languages. We have used (correctly) the same notation for the
variable and for the pointer. If thiswere C, with:

Poi nt p1, p2;
Poi nt *refA *refB;

then r ef A would represent the address of aPoi nt and *r ef A would be used to denote
the contents of that Poi nt . In C, the assignments would have read

p2 = pl;

*ref A = pl;
Now we can return to the BETA approach to dynamic data which is quite different
from the traditional one.

In BETA, a pointer is treated as a reference which may point to different objects (or
to NONE) at different times during execution whereas a variable is considered to be a
reference which will always denote the same object. Thus both are references but one
is static and the other dynamic and they will be used in the same way to access the
data. The concept of pointer storage addressis avoided.

In BETA, ssimple use of areference (static or dynamic) in an evaluation refers to the
contents of the object referenced. Thus, assuming that r ef A and r ef B designate Points
(and not NONE) then,

(0.0, 0.0) ->P1L ->refA->refB -> P2 ;
means that the contents (or value) of each point is set to (0,0).

To manipulate references to objects and not just the contents, we need to use a refer-
ence operator. In BETA, this is a postfix operator written [] (read box). Thus the
following imperative:

refA[] -> refB[];
has the effect that r ef B now points to (references) the same object asr ef A.

22

Dynamic Data Structures

23

BETA's approach is the converse of C's: BETA uses a referencing operator and C
uses a dereferencing operator.

Assignment Type | BETA | C
Content refA -> refB; *refB = *ref A
Reference refAl] -> refB[]; refB= refA

In BETA, it is also possible to make a dynamic reference denote a static object. This
can aso bedonein C:

BETA: P1[] -> ref A[]
C refA = &P1;

This is one way to give dynamic references values other than NONE. The other and
more obvious one involves dynamic creation of new objects at run-time. In BETA,
the new operator iswritten & Thus,

&Poi nt
causes a new point object to be created. Now, comes a delicate aspect.

To create a new object and to get the address of this new Poi nt , we also need the ref-
erence operator:

&Point[] ->refA];
As mentioned in section 3.2.3 of the BETA book, thisis a subtle point:

“The difference between &P and &P[] is very important: the expression &P means
‘generate a new instance of P and execute it’; the expression &P[] means ‘generate a
new instance of P without executing it and return a reference to this new object’.”

In C aPoi nt isalocated likethis:
refA = (Point*) mall oc(sizeof (Point));

The following program shows the use of static and dynamic references. This uses a
Poi nt user-type with integer attributes. There are 2 static references, P1 and P2, and a
dynamic reference, r ef A. At various points in the program r ef A points to either P1 or
P2 or to a dynamically allocated object. Note that access to Poi nt s via the static or
dynamic variables is syntactically identical. We assign various values to the three ref-
erences and use dunp to show the contents of the first attributes of all three. This
shows that effectively r ef A designates various Poi nt s during execution. At the end,
we show the use of a dynamically generated Poi nt in a cascaded assignment. In this
case, the purposeis just to show that it can be done and what happens. Useful version
of this dynamic generation will be shown later.

(111, 333) -> &Point -> P1;
What happens hereis that
1) anew Poi nt object is created,

2) thevalues (111, 333) are assigned to the variables in theent er list of the new
Object,

3) the (empty) do part of the object is executed,

4) avalue assignment is done between the exi t list of the Poi nt andthe ent er list
of P1 and

5) finaly, the (empty) do part of P1 is executed. The newly created Poi nt is inac-
cessible and the space it occupies will be reclaimed by the garbage collector.

Instead using the reference operator gives:
(111,333) -> &Point[] -> refAl];

Dynamic
reference to
static object

New operator

Create and
execute

Create and return
areference

Mjglner BETA System Tutorial

What happens here is that
1) anew Poi nt object is created,

2) the values (111, 333) are assigned to the variables in theent er list of the new

object,

3) areference assignment is done between newly created object and ref A. ref A

now refersto the new object.

ORI G N ' ~bet a/ basi cl i b/v1. 5/ bet aenv’
---- program descriptor ----
(#

(* Static and Dynanic references *)

Point: (# X Y: @nteger;

enter (XY)
exit (XY)
#)

refA : "Point;
P1, P2: @roi nt;

Dunp:
(#
do 'P1: ' -> puttext;
P1. X -> screen.putint(# format:: (# do 3->w dt h#) #) ;
", P2: ' -> puttext; P2.X -> putint;
", refA ' -> puttext; refA X -> putint;
new i ne;
#);
do

"Dynami c references' -> putline;
new i ne;

&Point[] ->refA];

(1,1) -> P1-> P2 -> ref A

Dunp;

(2,2) -> P2;
(3,3) ->refA
Dunp;

P1[] -> refAl]; Dunp;
P2[] -> refAl]; Dunp;

(1,1) -> PL; (2,2) -> P2; (3,3) ->refA
Dunp;

(111,333) -> &Point -> P1;
Dunp;
New i ne;

#)

Program 8: StaticAndDynamic.bet

The results from execution are shown below:

Dynani c references

P1: 1, P2: 1, refA 1
P1: 1, P2: 2, refA 3
P1: 1, P2: 2, refA 1
P1: 1, P2: 2, refA 2

Dynamic Data Structures

25

P1: 1, P2: 3, refA 3
P1: 111, P2: 3, refA 3

8.1 Primitive Types

In the previous section, all examples of static and dynamic references dealt with a
user defined type, Poi nt . Could we have done the same thing with one of the four
primitive types in BETA: i nt eger, char, bool ean or real ? The answer is no. For
these 4 types, it is not legal to apply neither the new nor the reference operators. Simi-
larly, we shall see later that other limitations apply and these types cannot be used as
prefixes for other object definitions.

Thus the following expressions areillegal:

RefInt: “integer;(* |LLEGAL *)
&eal -> ...(* ILLEGAL *)

The reason is that for safe pointer operation, each object that can be designated by a
dynamic reference (pointer) needs extra space for administrative data. In the case of
primitive types, this overhead can be overwhelming and it has been chosen to handle
them differently (and more efficiently) than other patterns. This is the same approach
used in Simula, Pascal and Eiffel.

In Smalltalk, another approach was used: the language tries to treat all objects (and
types) in exactly the same way. This makes for a very powerful system but, in spite of
considerable research, Smalltalk programs are still bulky and notoriously slow.

With the & operator, C alows pointers to anything and this is a major source of errors
in C code that neither the compiler nor the run-time system can help to control.

For situations where one would like to use primitive objects in ways identical to user-
defined objects, BETA has defined 4 specia patterns: | nt eger Obj ect , Char Obj ect ,
Real Obj ect and Bool eanbj ect . These are completely compatible with their primi-
tive counterparts (assignment, comparison, etc.) but dynamic creation (&), the refer-
ence operator ([]), inheritance, etc., are alowed on them.

Objects of
primitive types

Flexible and
extensible
repetitions

Object reference
repetitions

Quick sort
example

9 Repetitions (Arrays)

In BETA arrays are called repetitions.
A [10]

This repetition describes a set of static references to integers. 10 is called the range of
the repetition (the upper bound). In spite that the lower bound is always 1, repetitions
are flexible since the upper range is accessible as a local attribute of the repetition,
they can be assigned, extended and sub-range access is possible (slices).

BETA repetitions compared to its C counterpart:

@ nt eger;

Language BETA C
Declaration A: [10] @ nteger; int [10] A
Lower 1 0

Upper A. range 9

Size A. range 10

Access Ai] Ali]
Assignment A -> B; not possi bl e
Extend 10 -> A extend not possible
Slices Al 2..3] not possible

It should be noted that it is not possible to take the address of a repetition, i.e. A[] is
illegal (legal in C as&A).

In the current Mjginer BETA implementation, it is possible to declare repetitions of
types. char, bool ean, i nt eger, real , and any object reference:

(# Record: (# ... #);
A: [100] “~Record;
do &Record[] -> A[1][]; (* create a new instance of Record and

* assign it to first entry in A*)

#)
Besides assigning values to the elements of a repetition, whole repetitions can be as-
signed to other repetitions regardless of their ranges, e.g.:

a: [10] @nteger;
b: [1] @nteger;
do (for i: Arange repeat (* initialize a *)

i ->a[i]; (* put i intoi’'th position in repetition a *)
for);
4 ->b[1]; (* ais [1,2,3,4,5,6,7,8,9,10], and
* bis [14]
*)
a -> b; (* make repetition assignnent:

*ais[1,2,3,4,56,7,8,9,10], and

*bis[1,2,3,4,56,7,8,9,10]

*)
The next program illustrates how to use repetitions in a simple sorting program called
quick sort, originating from C.A.R Hoare. Given a repetition, one element is chosen
and the others partitioned into two subsets: those less than and those greater than or
egual to the partition element. The same process is then applied recursively to the two

26

Repetitions

27

subsets. When a subset has fewer than two elements it does not need any sorting and
the recursion stops.

In BETA it isillegal to use the reference operator on repetitions, and since the quick
sort algorithm is inherently recursive with the repetition as function argument in each
recursion, we face a problem. However, this problem is easily solved in BETA. We
simply define a pattern containing a repetition, and using an object of this type as the
argument to quick sort.

nunber Repetition: (# r: [1] @nteger #);

gsort:
(# nr: “nunberRepetition;
enter (nr[], ...)
do
#)
nunbers: @uwunber Repetition;
do

débrt(nunbers[],...);

So the limitation of not being allowed to take a reference to repetitions is easily cir-
cumvented.

The quick sort algorithm also uses aswap operation, that swaps two elements in the
repetition. This operation can be define locally inside (statically nested inside) gsort,
SO swap Can operate on the same repetition:

gsort:
(# nr: “nunberRepetition;
swap:
(#1,]: @nteger;
tenmp: @ nteger;
enter (i,j])
do nr.r[i] -> tenp;
nr.r(j] ->nr.r[i];
temp -> nr.r[j];
#)
enter (nr[], ...)
do ...
#),

The complete code including a loop for reading numbers to be sorted from the key-
board follows below:

ORI G N ' ~bet a/ basi cl i b/v1. 5/ betaenv';
---program descriptor---
(# (* Hoare QuickSort programillustrating how to use
* repetitions, sinple pattern declarations,
* bl ock structure and recursion.
*
)
nunber Repetition: (# r: [1] @nteger #);
gsort:
(# nr: “nunberRepetition;
left, right, last: @nteger;
swap:
(#1,j: @nteger;
tenmp: @ nteger;
enter (i,])
do nr.r[i]->tenp;
nr.r[jl->nr.r[i];
temp->nr.r[j];
#)
enter (nr[], left, right)
do L: (if left >=right then (* stop if rep. contains *)
| eave L; (* fewer than two el enents *)
el se
(* nove partition element to nr.r[1] *)

Local swap
function

28

Mjglner BETA System Tutorial

(left, (left+right)/2) -> swap;

| ef t->] ast;
(* partition *)
(for i: right-left repeat

(if nr.r[i+left] <nr.r[left] then
| ast +1- > ast ;
(last,i+l eft) -> swap;

if);
for);
(left,last) -> swap; (* restore partition elem *)
(nr[],left,last) -> qgsort;
(nr[],last+1,right) -> gsort;
if);

#)]

nunbers: @unber Repetition;

t: ~Text;

i: @nteger;

do
(* initialize a repetition with nunbers typed
* by the user

*)

' Type some nunbers: '->puttext;

getline->t[]; (* read all what the user types until newine *)
1->i;

t.reset;

L: (if not t.eos then

(* parse the text;

* assunming that the user only types numnbers

*

(i f i>nunbers.r.range then
(* remenber to extend the repetition *)
number s. r. range- >nunbers. r. ext end;

if);

t.getint->nunbers.r[i];

i +1->i;

restart L;

if);

(* sort the repetition *)
(numbers[],1,i-1) -> gsort;

"Sorted nunbers: '->puttext;

(for j: i-1 repeat
nunbers.r[j]->putint; ' '->put;

for);

new i ne;

#)
Program 9.1: QuickSort.bet

Running the program and typing some numbers results in the following output:

ni | % Qui ckSort
Type sonme nunbers: 9 8 4 6 3 82 7 12 452 7856 10 2
Sorted nunbers: 01 222345667889 12 45 78

9.1 Multidimensional Repetitions

It is not possible to make multidimensional repetitions using the current version of the
Mjginer BETA System. However, multidimensional repetitions are easily constructed,
e.g. arepetition with dimension NxM can be declared like:

mul _table: [N*M @ nteger;
which isintended to realize atwo-dimensional array of the form:

Repetitions

The following example shows how the multiplication table constructed in section 4
previously can be stored in atwo-dimensional repetition:

ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv’
---- program descriptor ----
(#

(* Multiplication Table 3

* (bjective: Store values in a repetition

*)
N, M @ nteger;
do
"\n\t** Multiplication Table ** \n\n'-> puttext;
"Enter dinmensions (NxM: '->puttext;
getint -> N,

getint -> M
(# mul _table: [N*M @ nteger;
do (* build table *)
(for i: N repeat
(for j: Mrepeat
i*j ->nul _table[(i-1)*M+ j];
for);
for);

(* print table *)
new i ne;
' '->puttext;
(for i: Mrepeat
i -> screen.putint(# format::(# do 4-> width #)#);
for);
new i ne;
(for i: N repeat
i -> screen.putint(# format:: (# do 4-> width #)#);
(for j: Mrepeat
mul _table[(i-1)*M+ j]
-> screen.putint(# format:: (# do 4-> width #)#);
for);
new i ne;
for)
#);
#)

Program 9.2: MultiplicationTable.bet

File Library

File attributes

End-of-file loop

10 Files

Our objective in this section is to open a file and analyze the characters that it con-
tains. This means that we will be doing input for the first time. At first, we will
merely count the characters in the file but we will also use command-line arguments
to apply the program to variousfiles.

File handling in BETA is quite painless. Files for both input and output are imple-
mented through a single pattern: fi | e. This pattern is not in the standard environment
bet aenv but in an extended library called i | e which includesbet aenv so it is suffi-
cient to replace bet aenv by fi | e inthe ORI G N statement.

A complete program skeleton to read afile called dat a1 isasfollows:

ORIG N '~beta/basiclib/vl.5/file'
--- program descriptor ---

(# F. @ile;

do 'datal' -> F. Nane;
F. openRead;
(*... use F ...*)
F. cl ose;

#)

Here, Fisdeclared asafi | e variable. The external file name is provided then open-
read isinvoked. After use, the cl ose operation should be called. Here we have used
only three attributes of the patternfi | e:

* Nane
* (penRead
* (ose

Other useful attributes/operations are:

* OpenWite: creates an empty file or erases the current contents of an existing
one

e OpenAppend: positions for writing at end of existing data
* (OpenReadWite: toalow Get, Put and Pos operations

e Get: returnsthe next character

* Put: writesor appends a character

* Eos: end-of-file check

The standard whi | e <not end-of -fil e> 1 oop for sequentially handling the contents
of afiletrandatesinto the following BETA code:

Loop:
(if not F.Eos then
F.get -> ch;(* reading the next elenment *)

restart Loop
if);
Here is the whole program for counting the characters in the file dat al. We have
added visua feedback to the user by printing '.' on the screen for every 10 characters
read. Note that using the input/output predicates directly (i.e. put or get) without .
notation (i.e. f . get) accesses the standard streams (keyboar d and scr een).

30

Files

31

ORIG N ' ~betal/basiclib/vl.5/file'
---- program descriptor ----

(# (*
* Count Char . bet: Sinple file handling program
* -Counting characters-
*)
inFile: @ile;
Ch: @har;
nc: @ nt eger ;
do
"datal' -> inFile.nanme; inFile.openRead; (* OPEN NG *)
'"Readi ng: '-> puttext; inFile.name -> putline;
Loop:

(if not inFile.eos then
inFile.get -> ch;
nc + 1 -> nc;
(if nc nbd 10 = 0 then '."' -> put if);
restart Loop
i£);
new i ne;
nc -> putint; ' characters in file' -> putline;
inFile.close;
#)

Program 10.1: CountChar.bet

The output looks like this:
ni | % Count Char
Readi ng: datal
41 éharacters infile
If thefile dat a1 isnot present, execution gives the following error message.
ni | % Count Char
**** Eyxception processing
File exception for 'datal'
No such file
Beta execution aborted: Stop is called
Look at Count Char. dunp'

10.1 Command-line arguments

At present, our program only works with one file dat a1. It would be more useful if
the name of the file could be specified by the user. A common way to allow this in
UNIX is to pass the name of the files to be used as arguments on the command line
used to invoke the program. For example, to count the characters in file dat a2, we
would like to invoke count asfollows:

% Count Char dat a2

The demo file programs that come with BETA all work thisway. To do this, there are
two useful functions in the standard environment which correspond to the UNIX C
argc and ar gv variables. These are:

* noCf Argument s: which returns the number of arguments on the command line
and

* argunents: which given an integer parameter N returns the n'th argument on the
command line. Remember that argument 1 is the name used for the program -
Count Char 1 in our example - and that the one we want will be argument 2.

File Exception

32

Mjglner BETA System Tutorial

Below, we show how count has been modified to use the command argument. To
keep things simple, we do not check the number of arguments or provide for an error
message. For examples of how to do this, see the demo programs.

ORIG N ' ~betal/basiclib/vl.5/file
---- program descriptor ----

(# (* CountCharl.bet: Sinple file handling program
* -Counting characters-

*)

inFile: @ile;
Ch: @har ;
nc: @ nt eger ;

do
2 -> Argunents -> inFile.nane;
i nFi |l e. openRead; (* OPEN NG *)

'Readi ng: '-> puttext; inFile.name -> putline;
Loop:
(if not inFile.eos then
inFile.get -> ch;
nc + 1 -> nc;
(if nc nbd 10 = 0 then '." -> put if);
restart Loop

if);
new i ne;
nc -> putint; ' characters in file' -> putline;

inFile.close;
#)

Program 10.2: CountCharl.bet

And below we show the application of Count Char 1 to the count program itself.

ni | % Count Char 1 Count Char 1. bet
Readi ng: Count Char 1. bet

681 characters in file
ni |l %

A nice thing about passing file names as command line arguments is that the shell will
expand the file name as expected. In particular, the '~ and *' characters are inter-
preted correctly in the example below:2

ni | % count -~/ Bet a/ dat *
Readi ng: ../Beta/datal

41 é:haracters infile
These also work:
e count ~vaucher/Beta/datal
e count ./datal
e count ../Beta/file/../datal

Were we to set the filename directly, it would be OK to include “.” and “..” in the
path name but “~" would not be handled properly.

2 For Unix shellsonly.

Files

33

10.2

The following example program illustrates how to count each occurrence of charac-

Storing Characters in a Repetition

tersin the input file. The count for each character is stored in arepetition:

occurrences: [256] @har;
using the assignment:

occurrences[Ch] +1- >occurrences|[Ch];
and the occurrences are printed using af or and ani f statement:

(for i:256 repeat
(if occurrences[i]>0 then (* only print if > 0 *)
i->put; (* notice how a char can be printed *)
"1 '->puttext;
occurrences[i]->putint;
new i ne;
if);
for);

The complete program is as follows:

ORIG@ N ' ~betal/basiclib/vil.5/ file'
---- program descriptor ----

(#

do

#)

And below we show the application of Count Char 2 to the Count Char 2. bet program

itself.

(* CountChar2.bet: Sinple file handling program
* -Counting occurrences of characters-

*)

inFile: @ile;
Ch: @har;
nc: @ nt eger ;

occurrences: [256] @har;

2 -> Argunents -> inFile.nanme ;
i nFil e. openRead; (* OPENI NG *)

Loop:
(if not inFile.eos then
inFile. Gt -> Ch;
nc+1->nc;
occurrences[Ch] +1- >occurrences[Ch];
restart Loop
if);

new i ne;
(for i:256 repeat
(if occurrences[i]>0 then (* only print if > 0 *)
i->put; (* notice how a char can be printed *)

"1 '->puttext;
occurrences[i]->putint;
new i ne;
)
for);
"Total '->puttext;

nc -> putint;
' characters in file' -> putline;
i nFile.close;

Program 10.3: CountChar2.bet

Indexing using a
char

Mjglner BETA System Tutorial

34

ni | % Count Char 2 Count Char 2. bet

)
-
c
(7]
S
o
-
[&]
®
S
a
=
o
o
)
o
— N~
. - o SN O < DM MO OWOOS O —w
NN AN AN ANND N T O AOMMMTNANAAOONOMLOO A O AT NN N AN AN AN TS
——
.. O.—
B e ¥ I lBANYBG AL OLL (T Z0A G- 8800 b b, ECO Ll oSS EXSTEE

11 Directory

Directory handling is very similar to file handling in the Mjginer BETA System. Files
and directories have similar properties like nane, pat h, etc. Files are special since the
contents typically are characters that can be read and written, directories are special
since the contents are files and directories. These similar and specia properties are
both modeled inthefil e and di rect ory libraries.

When using the di r ect or y library, adirectory is simply declared as
ORIGA N ' ~betal/basiclib/vl.5/directory’

"d: @lirectory;

A directory can be given a name:
"myDir' -> d.nane;
And it can be tested for existence, content, entries, and be scanned:
* d.exists: returnstrueif the directory exists
* d.enpty: returnstrueif the directory has some content

* d.noOEntri es: returns the number of entries (files and directories) in the direc-
tory.

* d.scanEkntries: calsINNER for each entry (f ound) in the directory.

The following program shows a simple use of directory: The directory with the path
given as argument is scanned, and the names of all the entries are printed.

ORIG N ' ~betal/basiclib/vl.5/ directory';
---program descriptor---

(# d: @irectory;

do (if noOF Argunents <> 2 then

Directory and File

Directory
attributes

"Usage: ' -> puttext; 1->argunents->puttext; ' path' -> putline;

st op;
if);

(* set nane of directory *)
2 -> argunents -> d. naneg;

(* print name of directory *)
new i ne;
d. name -> puttext;

(* test for content *)

(if d.enpty then ' is empty.' -> putline;
else ' is not enpty.' -> putline;

if);

"It contains the follow ng '-> puttext;
d.noOFEntries -> putint;
entries:' -> putline;

(* scan the entries *)

d. scanEntries
(# (* found refers to the current entry *)
do found. path -> putline;
#);

35

36

Mjglner BETA System Tutorial

Stop operation

new i ne;
#)

Program 11: ListDir.bet

This program aso checks for the number of arguments. If the number of argumentsis
not 2, then an error message is printed, and st op iscalled. st op isdefined in the basic
environment bet aenv, and when called, terminates the execution.

Below we show the output of Li st Di r on the current working directory:

nil%ListDr

is not enpty.
It contains the following 17 entries:

Count Char . bet

Count Char 1. bet
Count Char 2. bet

Expl or eTypes. bet
Hel | oWor | d. bet
ListDr

Li stDir. ast

Li stDir. bet

Mul ti pl eAssi gnment . bet
Mul tiplicationl. bet
Mul ti plication2. bet
Mul tiplication3. bet
Si mpl eTypes. bet
Squar eRoot . bet
sun4s

12 Text Manipulation

The basic BETA environment defines a Text pattern for manipulating texts. Text
constants have been used a lot in the previous examples. Here we explore more on the
many facilities of the text concept. Constant texts can be assigned to text variables
and texts can be added:

(#t: @ext;(* declaret as a static ref. to a text object *)
r. ~“text;(* declaret as a dynanmic ref. to a text object *)

i: @nteger;
do 'foo' ->t; (* assign a constant tot = 'foo *)
-> t.append; (* append one blank tot = "'foo "' *)
-> t.prepend; (* prepend one blank tot ="' foo ' *)

t.length -> i; (* assign the length of t to i (5) *)
(2,4) ->t.sub ->r[]; (* get substring 'foo’ fromt *)
#)

Users do not have to bother about extending the text when adding or manipulating. Flexible and
The length of the text object will automatically be adjusted. Many functions on texts ~ extensible text
uses acurrent position in the text (t . pos). For example: concept

(# t: @ext;

do 'foo'->t; (* sets pos to t.length *)
"bar'->t.puttext; (* adds 'bar' after current pos: t='foobar'?*)
1->t. pos;
"bar'->t.puttext; (* t = '"barbar' *)

#)

Texts sub-strings can be fetched and assigned to another text object reference, and
texts can be inserted at a specified position:

(# t: @ext; (* declare t as a static ref. to a text object *)
r: “text; (* declare t as a dynamic ref. to a text object *)
do ' foo ' ->t; (* assign a constant tot ="' foo ' *)
(2,4) ->t.sub ->r[]; (* get substring 'foo’ fromt *)
("bar',5) ->t.insert; (* insert substring 'bar' int ="' foobar ' *)
#)
Texts can be compared using the equal function.
(# t: @ext; Comparing texts
b: @ool ean;
do ...
'foo' ->t.equal -> b; (* case sensitive conparison *)

"foo' ->t.equal NCS -> b; (* not case sensitive conparison *)
#)
The following example program is an extended version of the character counting pro-
grams constructed before. The program can count either characters or lines in the in-
put file. In addition to text comparison, the program uses two new features.

e getline: readsfrom input, i.e. what the user types. Waits until the user has typed
anew i ne

* ascii.newine:ascii ISan object defined in bet aenv containing attributes for ASCII object
manipulating and comparing ASCII characters. new i ne is a generic definition of
the newline character. ascii aso contains conversion functions, e.g. t oLower,
definition of white space, e.g. i sWi t eSpace, €tc.

ORIG N ' ~betal/basiclib/vl.5/file'
---- program descriptor ----

37

38

Mjglner BETA System Tutorial

(# (* FileCount.bet: Sinple file handling program
* -Counting |lines/characters-

*)

inFile: @ile;
Ch: @har ;
nc: @ nt eger ;

answer: “text;
lines, chars: @Bool ean
do
2->Ar gunent s- >i nFi | e. nane ;
i nFil e. openRead; (* OPENI NG *)
"Count what in '''->puttext; i nFi | e. name- >puttext;
"'' (lines/chars)? '->puttext;
(* read from keyboard — what the user types *)
getline->answer[];
(if true
[1("1ines'->answer.equal) then true->lines;
/1 (' chars'->answer.equal) then true->chars
el se
" Unknown i nput'->putline;
Stop; (* end execution *)
if);
Loop:
(if not inFile.eos then
i nFil e. Get - >Ch;
(if true
/llines then (if Ch//ascii.newline then nc + 1->nc if);
/I chars then nc + 1->nc;
if);
restart Loop

if);
new i ne;
nc->putint;
(if true
/llines then ' lines '->puttext;
/lchars then ' characters '->puttext;
if);
"infile """ ->Puttext;

i nFi | e. name- >putt ext;
"'*\n\n'->puttext;
inFile.close

#)

Program 12.1: FileCount.bet

The output running Fi | eCount on itself is:

nil % Fi | eCount Fil eCount. bet
Count what in 'FileCount.bet' (lines/chars)? lines

46 lines in file 'FileCount. bet

nil % Fi |l eCount Fil eCount. bet
Count what in 'FileCount.bet' (lines/chars)? chars

1238 characters in file 'FileCount. bet
Finally, the table below lists some of the useful attributes of texts:

Text Manipulation

39

t.length
t.pos
t.enpty -> b
t.clear -> b
c ->t.put
t.get ->c

-> t.puttext
-> t.prepend
-> t.append

> t.putint

t.getint -> i

t.getAtom-> r[]

t.getLine -> r[]

i ->t.inxget -> ¢
(c,i) ->t.inxput
t.copy -> r[]

r{]->(t.copy).append->s[]
r{]->(t.copy).prepend->s[]
t.scanAtom(# do ...#)

t.scanAl |l (# do ...#)

(i)
(
r

->t.sub -> r[]

i,j) ->t.delete
[T ->t.less

r{]->t.greater

t. mkelLC

t. mkeUC

c ->findAll (# do ...#)
t. ECSerr or

Ret urns nunber of characters of text
Returns current position

Returns True if t is enpty

Sets the length to zero

Appends the character c to t

Returns the character at current position
and increnents position by 1

Returns the character at current position
wi t hout updating the position

Adds r to t starting at current position
Prepends the text r to t

Appends the text r to t

Inserts the integer i tot starting at
current position

Reads the next integer fromt starting at
current position
Reads characters unti
and returns the text
Reads characters fromt unti
and returns that text.
Returns the character at position

Repl aces the character at position
Returns a copy of t

Returns s[] where s =t cat r3

Returns s[] where s =r cat t

Scans fromcurrent position until next
whi te-space and call INNER for each char
Scans all the elenments int and calls IN
NER for each char

Returns the text from position
tionj fromt

Del etes characters in the range i:]j
Tests whether r is less than t. Lexico-
graphic ordering is used

Tests whether r is greater than t.
graphic ordering is used

Converts all characters to | ower case
Converts all characters to upper case
Calls INNER for each occurrence of c int
Cal | ed when readi ng past |ength of the

t ext

next white-space

next new i ne

to posi -

Lexi co-

Please see the basic libraries manual [MIA 90-8] for more details about the text con-

cept.

12.1 Advanced Formatted Input and Output

The Mjglner BETA System also provides facilities for formatted input and output
(similar to the scanf and pri ntf functionsin C). These facilities are implemented in

the form of

the get For mat

and put Format operations defined in the

'~bet a/ basi cl i b/v1.5/ formatio' library.

Both get For mat and put For mat take atext string as argument. This text string must
contain a format specification of the input to be read from (respectively output to) the
stream. The format string may be any string, possibly with one or more embedded
markers. The markers specify the variable parts of the expected input (respectively

3 Actually thisis an example of how to combine patterns that exits references. Append is called on
the reference returned by copy. Thisfacility is called computed remote.

Useful Text
operations

More information

getFormat and
putFormat

40

Mjglner BETA System Tutorial

output), such asinteger values. The markers are indicated in the string by aleading '%.
Following the '% is the specification of the marker type.

In section 8 previously, the example program uses a complex bunp function to print
out three numbers and some text. put For mat could have been used instead as illus-
trated in the following example.

ORIG@ N ' ~betal/basiclib/vl.5/ formti o'

(#

do

#)

-- program descriptor ----
(* Static and Dynanic references *)

Point: (# X Y: @nteger;

enter (XY)
exit (XY)
#)

refA : "Point;
P1, P2: @roi nt;

Dunp:
(#
do 'P1: %8d, P2: %, refA %\n'->
put Format (# do P1. X -> d; P2.X ->d; refA x ->d #)
#);

"Dynami c references' -> putline;
new i ne;
&Point[] ->refA];

(1,1) -> P1-> P2 -> ref A

Dunp;

(2,2) -> P2;
(3,3) ->refA
Dunp;

P[] -> refA[]; Dunp;
P2[] -> refA]; Dunp;

(1,1) -> P1; (2,2) -> P2; (3,3) -> refA
Dunp;

(111,333) -> &Point -> P1;

Dunp;
New i ne;

Program 12.2: StaticAndDynamic2.bet

The output is exactly the same as in section 8:

ni

Dy

P1:
P1:
P1:
P1:
P1:
P1:

| % St ati cAndDynani c2
nam c references

1, P2: 1, refA 1
1, P2: 2, refA 3
1, P2: 2, refA 1
1, P2: 2, refA 2
1, P2: 3, refA 3
111, P2: 3, refA 3

13 Container Library

One of the strengths of the Mjglner BETA System is the large set of available li-
braries. One of very useful libraries, is the container libraries. The container library
supports a number of different ways to store data: sets, multisets, lists, hashtables,
stacks, etc. Here we will show how to usethel i st and the hashTabl e.

13.1 List Example

Thellist library is available in the ' ~bet a/ cont ai ners/v1.5/1ist', thusthislibrary
must be included when using lists.

We will use the directory example above, and make a list to store the entries of the di-
rectory.

A listissimply declared as follows:
dirList: List
(# elenment:: Text #);

Here we declare a pattern named di r Li st that inherits from the | i st pattern in the
'~bet a/ cont ai ners/v1.5/1ist' library. We specify the type of the elements in the
list by extending the virtual pattern element to be the type of t ext . For details about
the BETA concept of virtual patterns, see the BETA language introduction [MIA 94-
26].

The di r Li st pattern inherits an operation from the 1i st pattern that can be used to
add elements, so we can simply add an element to the list by:

di rname[] -> dirlList.append;

Lists have severa other operations. Some useful operations are briefly described in
the table below. Please see the container manual [MIA 92-22] for more details.

| .clear Removes all elenments currently in the list, mak-
ing it enpty

l.empty -> b Returns true if the list is enpty

l.size -> i Ret urns the nunber of elenments currently in the
list

equal :: (# ...#) Defines the equality test used by the inplenenta-
tion of the different operations. Users of I|ist
nmust further bind equal to contain the proper
equality test for the specified el enent type.
Default equality test for equal references (i.e.
t he sane object)

e[] ->I|.has Takes an el ement, and checks whether it is in the
list
| .scan(# ...#) Scans through the list, invoking INNER for each

element in the list. In each turn of the scan
"current" refers to the current elenent in the

list.

[.copy-> I1][] Default copy is one-level (shallow) copying.
I.e. copying the list and all objects in the
list.

elnf]->l.prepend | insert elmas first el enent

elnf]->l.append insert elmas |ast el enent

41

Virtual patterns ir
BETA

Useful operations
on List

42 Mjglner BETA System Tutorial

In the table above, it is mentioned, that the equality test should always be defined. For
our directory list this can be done like:

Specialize List dirList: List
(# element:: Text;
equal :
(# (* since the elenent type is text sinply test whether the
* two text strings are equa
*
do left[]->right.equal ->val ue;
#)]
#)]

The extended directory listing program can the be as follows:

ORIA N ' ~betal/basiclib/vl.5/directory'
I NCLUDE ' ~bet a/ contai ners/v1.5/1ist';
---program descriptor---
(# dirList: @ist
(# elenent:: Text;
equal :
(# (* since out elenment type is text sinply test whether the
* two text strings are equa
*
do left[]->right.equal ->val ue;
#);
#);
d: @irectory;
do (if noCf Argunments <> 2 then
"Usage: ' -> puttext; 1->arguments->puttext; ' path' -> putline;
st op;
if);
(* set nane of directory *)
2 -> argunents -> d.nane
(* print nanme of directory *)
new i ne;
(* initialize list *)
dirList.init;
(* scan the entries and append to list *)
d. scanEntries
(# (* found refers to the current entry *)
do found. path -> dirlList.append;
#);
(* dirList now contains all the nanmes of the entries in the
* directory
*
dirList.scan
(# (* current refers to the current text elenent *)
do current[] -> putline; (* print the text *)
#);
#)

Program 13.1: SavelListDir.bet

Later we shall see how thislist can be saved (persistent) and used in another program.

13.2 HashTable Example

We could also choose to save the file list in ahash table. A hash tableistypically used
to store objects that should be retrieved fast from the table. In order to store an object
in a hash table it is necessary to define a hash function that given an element returns a
value that can be used in the hash table implementation. A good hash function for our
filelist could be

hashFuncti on:
(# (* scan all characters in the filenane and conpute a val ue

Container Library

* for the hash function
do name. scanAl |l (# do val ue*100 + ch -> val ue #);
#);

The hashtable can then be defined as follows:

di r Tabl e: @ hashTabl e
(# element:: Text;
hashFuncti on: :
(#
do e.scanAl | (# do val ue*100 + ch -> val ue #);
#)
#)

And the complete program using this hash table:

ORIGA N ' ~betal/basiclib/vl.5/ directory’
| NCLUDE ' ~bet a/ cont ai ner s/ v1. 5/ hashTabl e;
---program descriptor---
(# dirTable: @hashTabl e
(# element:: Text;
hashFuncti on:
(#
do e.scanAl |l (# do value*100 + ch -> val ue #);
#);
#)
d: @irectory;
do (if noOF Argunents <> 2 then
"Usage: ' -> puttext; 1->argunents->puttext;
st op;
)
(* set nane of directory *)
2 -> argunents -> d. naneg;
(* print name of directory *)
new i ne;
(* initialize table *)
dirTable.init;
(* scan the entries and append to list *)
d. scanEntries
(# (* found refers to the current entry *)
do found.path -> dirTable.insert;
#) ;
(* dirTable now contains all the names of the entries in the
* directory
*
dirList.scan
(# (* current refers to the current text element *)
do current[] -> putline; (* print the text *)
#);

' path' -> putline

(* print hashtable statistics on screen*)

"\nStatistics: '->screen.putline;

dirTable.statistics(# do screen[]->print #);
#)

Program 13.2: DirTable.bet

Running this program on the current directory gives the following output:
nil % DirTabl e

St ati cAndDynani c. bet
Fi | eCount . bet

Expl or eTypes. bet
Count Char 2. bet
Count Char 1. bet

44 Mjglner BETA System Tutorial

Count Char . bet

Mul tiplication3. bet
Mul ti plication2. bet
Mul tiplicationl. bet
Mul tiplicationTabl e. bet
Di r Tabl e. bet

Di r Tabl e. ast

Hel | oWwor | d. bet
SavelistDir. bet

Qui ckSort. bet

Squar eRoot . bet

Mul ti pl eAssi gnnent . bet
Di r Tabl e

sun4s

Li st Di r. bet

Si mpl eTypes. bet

Statistics:

H stogram (0,2,1,3,0,0,0,0,2,3,0,3,2,0,0,2,0,0,0,1,2,2,2,0,1)
Maxi mum Col | i sions: 3

M nimum Col | i sions: O

Average Collisions: 2

More information More information and more examples using the other containers in this library can be
found the Mjglner BETA System manua [MIA 92-22].

14

Exceptions

The pattern excepti on defined in' ~bet a/ basi cli b/v1. 5/ betaenv' iSused asa Exception pattern
superpattern for all exceptions in the Mjglner BETA System. The default action of an

exception is to stop the program execution and print an informative error message on

the screen. In addition, the file <pr ogr amnane>. dunp contains a dump of the call

stack. Except i on uses the pattern st op for termination. Specific error messages can

be defined by specializing theexcept i on pattern. The attribute nsg of exceptionisa

t ext object that is used to accumulate error messages . If you wish to prevent the

program execution from being stopped in order to handle the exception during execu-

tion, the boolean attribute cont i nue of excepti on must be settot r ue.

The exceptions are often defined as a virtual pattern of other patterns (such as the
fil e pattern, discussed below).

In order to differentiate between potential fatal exceptions and more harmless excep- Notification
tions, thenot i fi cati on pattern isaso defined in bet aenv defined as: pattern

notification: exception(# do true->continue; |NNER #);

14.1

Examples Using Exception

In order to illustrate the use of exceptions, let us return to the previous file example.
Without using the exception handling facilities an attempt to open a non-existing file
produced the following error messages:

ni | % Count Char

**** Eyxception processing
File exception for 'datal'

No

such file

Beta execution aborted: Stop is called
Look at Count Char. dunp'
Now let us see what can be done by using exceptions.

The binding of noSuchFi | eErr or shows how to prevent the system from stopping the
execution when the program attempts to open a non-existing file. Instead the user is
prompted for another file name. The binding of noSpaceEr r or shows that a message
can be added to nsg.

ORIA@ N ' ~betal/basiclib/vl.5/ file'
(#inFile: @ile

do

(# noSuchFileError:: (* continue execution *)
(# do true->continue; false->0K #)#);
outFile: @ile
(# noSpaceError:: (* extend exception; put nessage to nsg *)
(# do "It is tine to delete garbage!'->nsg.putline #)#);
oK @ool ean;

"in.bet' -> inFile.nane;

true -> XK

openFile: (* |abeled block *)
(#

do inFil e. openRead,;
(if not OK then
"File does not exist!' -> screen.putline;
"Type input file name: ' -> screen.puttext;

45

46

Mjglner BETA System Tutorial

i nFil e.readFi | eNane;

true -> CK;

restart openFile (* restart |abeled bl ock *)
if)#);

"out.bet' -> outFile.nane;

outFile.openWite;

readFi |l e:

(#

do (if not inFile.eos then
false -> inFile.gettext -> outFile.puttext;
out Fil e. new i ne;
restart readFile

el se | eave readFil e

if)#);

inFile.close

outFil e. cl ose;

#)

An attempt to open a non-existing file will produce the following error messages:

Fil e does not exist!
Type input file nane:

It gives the possibility to proceed with another file name.

In case of disk space exhausted, the following message will be printed on the screen
before the program execution is stopped:

**** Exception processing
Error in file "in.bet'

File systemis ful

It is tine to del ete garbage!

Thefirst lineis from the general pattern except i on, the second and the third lines are
from the binding of noSpaceError infile and the fourth line is from the binding
above, i.e. at the user level.

15 Access to External Functions and
Data

The Mjaglner BETA System alows a tight integration between the BETA language
and routines and data structures, originating from the C language. Many of the li-
brariesin the Mjglner BETA System (such as the interface to the X Window System)
Is based on this tight integration.

The integration allows for two types of integration, namely integration of routines,
and integration of data structures. The facilities give the BETA programmer the pos-
sibility to invoke routines, written in C, and for accessing data structures, allocated in
C. Moreover, the facilities also works the other way around, namely by allowing
BETA patterns to be invoked (instantiated) from C routines, and BETA objects to be
manipulated by C routines.

15.1 Example

Imagine that we have a database with person records. The database has a C interface
and we like to use the database in BETA.

The following C declarations and functions illustrates a simplified database:

t ypedef struct Person {

[ong 1D

char *firstnane, *surnane;

char sex; /* mlale) or f(emale) */
} Person;

#defi ne MaxPersons 200
Per son Per sons[MaxPer sons];

Person *get Person(long ID) {
if (I1D>=0 && | D<MaxPer sons)
return &Persons[I1D];
el se
return O;

}

| ong putPerson(long ID, char * firstname, char* surnanme, char sex) {

if (1D>=0 && | D<MaxPersons) ({
Persons[1D]. | D=l D
Persons[1D].firstname=firstnamne;
Per sons[| D] . sur name=sur nane;
Per sons[| D] . sex=sex;
return 1,

} else {
return O;

}

}

We can then interface to the two functions and the Person struct by the following
ext ernal and ext er nal Recor d declarations:

get Per son: ext er nal

(# I D. @nteger;
ptr: @ nteger;

47

Integration of
routines and data

Callbacks from C
to BETA

The C database
interface

48 Mjglner BETA System Tutorial

enter |ID
exit ptr
#);

put Per son: ext ernal
(# I D. @nteger;
firstnane, surnane: [1] @har;
sex: @har;
result: @ool ean;
enter (1D, firstnanme, surnane, sex)
exit result
#)
Person: external Record
(# ID. @ong(# pos::(# do 0-> value #)#);
firstname: @ong(# pos::(# do 4-> value #)#);
surname: @ong(# pos::(# do 8-> value ##); (* char ptr *)
sex: @yte(# pos::(# do 12-> value #)#);
#)
external pattern |nterfacing to C routines are done by specifying the ext er nal pattern as the superpat-
tern for the BETA pattern, which, when invoked, should invoke the C routine. The
name of the entry call of the C routine should be the same as the name of the BETA
pattern. The BETA compiler will then generate a call to an external routine with the
same name as the BETA pattern, using C's style of passing parameters. The pattern:

get Person: external
(# |D. @nteger;
ptr: @ nteger;

enter ID
exit ptr
#)

describes the interface to an external C function with the name get Per son.

cStruct and Transferring data to and from the external languages is dealt with through two special

ext ernal Record purpose patterns: ¢St r uct and ext er nal Recor d. ¢St ruct iSthe means for specifying
aBETA object with a specific storage layout, and with the purpose of transferring this
object to the external language for processing. That is, a cStruct object is allocated
by BETA and made available for processing externally. ext ernal Record is the
means for specifying a BETA interface into some data structures, allocated externally.
The pattern:

Per son: external Record
(# I1D. @ong(# pos::(# do 0-> value #)#);
firstnane: @ong(# pos::(# do 4-> value #)#);
surnanme: @ong(# pos::(# do 8-> value ##); (* char ptr *)
sex: @yte(# pos::(# do 12-> value #)#);
#)]
describes an interface to an external allocated struct (Per son) with four fields.
We can create a person by calling put Per son like this:
(117, Roger',"'Smth','m)->put Person
We can get aper son from the database by:
117 -> get Person -> aPerson.ptr;
Notice, that we must assign to the pt r attribute of the ext er nal Recor d Per son.

cString The Per son can now be examined like any other BETA object, except for the “ string”
declarations f i r st nane and sur nane. These refers to C strings. The Mjaginer BETA
System includes a cSt ri ng library for easy interface to these C strings, so we ssmply
make a small operation to print out the strings:

put CStri ng:
(# cstr: @String;
enter cstr

Access to External Functions and Data

49

do cstr.get -> puttext;
#)

Finally we must specify where to find the C object file we are interfacing to. Thisis
done using a OBJFI LE specification. The specification:

OBJFI LE nti ' $/ cperson. obj '
mac ' $/ cperson. obj '
default '$/cperson.o';

means that we should link with the file cper son. o located in the subdirectory with
the name of the platform—the same name as the code subdirectory (' $' expands to
name of platform).

The C object file can also be created automatically by using make files. The
specification:

MAKE nti ' person_nti. nake'
nac ' person_nmac. nake'
default ' person_uni x. make';

describes for each platform which make file must be used. The Unix version looks
like:

$(MACHI NETYPE) / cper son. o: cperson.c
$(CC) -c -o $(MACH NETYPE)/ cperson. o cperson.c

And now the complete program:

ORIA@ N ' ~betal/ basiclib/vl. 5/ external';
| NCLUDE ' ~beta/sysutils/vl.5/cstring';

OBJFI LE nti ' $/ cperson. obj '
mac ' $/ cperson. obj '
default '$/cperson.o';

MAKE nt i ' person_nti . nmake'

mac ' person_mac. make'
default 'person_uni x. make';
--program descriptor--
(#
get Person: external
(# I D. @nteger;
ptr: @ nteger;

enter |ID
exit ptr
#);

put Person: ext ernal
(# I D. @nteger;
firstname, surnane: [1] @har;
sex: @har;
result: @ool ean;
enter (1D, firstnane, surnane, sex)
exit result
#);
Per son: External Record
(# ID. @ong(# pos::(# do 0-> value #)#);
firstname: @ong(# pos::(# do 4-> value #)#);
surnanme: @ong(# pos::(# do 8-> value #)#); (* pointers to
text *)
sex: @yte(# pos::(# do 12-> value #)#);
#) ;
put CStri ng:
(# cstr: @String;
enter cstr
do cstr.get -> puttext;
#)
aPer son: @Person;
do

OBJFILE

MAKE

50

Mjglner BETA System Tutorial

#)

(* store a person in C database *)

(if not ((117,' Roger','Snmith','n)->putPerson) then
"Failed to store person'->putline; stop;

if);

(* get person from C- dat abase *)

117 -> getPerson -> aPerson. ptr;

(if aPerson.ptr = 0 then
"Failed to retrieve person' -> putline; stop;

if);

"Person: ' -> puttext;
aPerson. 1D -> putint;

"' -> put;

"Name: ''' -> puttext;
aPerson.firstname -> putCString;
"' -> put;

aPer son. surnanme -> putCString;
"t -> puttext;

"Sex: ' -> puttext;

aPer son. sex-> put;

new i ne;

Program 15: Person.bet

Output of running the program is:

ni | % Per son
Person: 117 Nanme: 'Roger Smith' Sex: m

16 Using the Persistence Library

The persistence library can be used to save your data on the disk for later use in an-
other program execution. Any object created can be saved using the persistence li-
brary. The patterns defining the objects do not have to be extended in any way before
the objects can be saved. Imagine that we like to save the character count in the pre-
vious example for usage in another program. The pattern definition of the di r ect o-
ryLi st can be described in a separate file (called Di r Li st . bet) asfollows:

ORIG@ N ' ~betal/ contai ners/vl.5/1i st
--- |lib: Attributes ---
directorylList: List
(# ...
#);

Program 16.1: DirList.bet

Notice, that we do not define a program fragment in this file, instead we define at-
tributes only. A file describing simple pattern declarations only can use the slot called
l'i b defined in the bet aenv environment (see section 19 below about the fragment
system, for more details). The declarationsin the Di r Li st file can be used by includ-
ing the file in the program. Thus the program listed Program 13.1 can be changed
like:

ORIG N ' ~beta/basiclib/vl.5/file";
| NCLUDE 'DirlList'
---- program descriptor ----
(# dir: @irectory;
dirList: ~directorylList;
do &directorylList[] -> dirList[];

#)
Program 16.2: SavelListDir2.bet

We can now save Di r Li st using the persistent store, The persistent store is available
as a library in the file ' ~bet a/ persi stentstore /vl1.5/ persistentstore. By
including this file we can use the per si st ent st or e pattern to save the list. persi s-
t ent st or e hasthe following useful operations:

e persistentstore. create: given atext create a persistent store with that name

e persistentstore. openWite: given aname opens the persistent store with read
and write permission. openRead opens a store with read permission only

e persistentstore. get: given a name and a pattern variable, returns an object in
the storage with that type

e persistentstore. put: given aname and an object, stores that object in the per-
sistent store

e persistentstore. cl ose: closesthe persistent store

The following program is similar to the one above, except that it stores the di r Li st
in a persistent store.

ORIG N ' ~beta/basiclib/vl.5/file";
| NCLUDE ' ~bet a/ persi stentstore/vl. 5/ persistentstore;
| NCLUDE ' DirlList’

51

Making a library

Operations on a
persistent store

52 Mjglner BETA System Tutorial

---- program descriptor ----
(# (* Saving the file names in a persistent store *)

dir: @lirectory;
theStore: @ersistentstore;
dirList: ~directorylList;

do &directorylList[] -> dirList[];

(* Program 13.1 *)

"fileStore' ->theStore. create;
(dirList[]," " nyList')->theStore. put;
t heSt ore. cl ose;

#)

Program 16.3: SaveListDir3.bet

The persistent store is now located in the file directory: fi | eSt ore.
Finally, we can make a program that reads the list, and examines the data:

ORIG N ' ~beta/basiclib/vl.5/file";

I NCLUDE ' ~bet a/ per si stent store/v1. 5/ persi stentstore;
| NCLUDE ' DirlList'

---- PROGRAM descriptor ----

(# (* Reading counted occurrences of characters
* froma persistent store
*
theStore: @ersistentstore;
dirList: ~directorylList;
do
‘fileStore' ->theStore. openWite;
("nyList', directorylList##)->theStore.get->dirList[];
dirList.scan(# ... #);

t heSt ore. cl ose;
#)

Program 16.4: GetListDir.bet

More information A complete description of the facilities in the persistent store library can be found in
[MIA 91-20].

17 Graphical User Interface

In this section we will show how to use two different graphical user interface li-
braries. The first example uses the device independent library called GUIEnv and the
second example uses the X11 specific MotifEnv library.

17.1 GUIEnv

GUIEnNv is a device independent graphical user interface library, intended for making
applications with graphical user interfaces running on:

* Macintosh
* X Window System (Motif Widgets)
* Windows (Win32)

GUlenv redlizes user interfaces of many different look-and-feels. GUlenv allows
construction of portable user interfaces in such away that the look-and-feel of the ap-
plications, will conform to the standardized |ook-and-feel of the specific platform.

The basic GUI library is defined in the file ' ~bet a/ gui env/ v1. 4/ gui env' . An ap-
plication with a graphical user interface, thus must have origin in this file. The
gui env library defines a pattern also called gui env in which all the user interface at-
tributes, operations, and patterns are available. So every GUIEnv application typically
has the following outline:

ORIG@ N ' ~betal/guienv/vl. 4/ guienv';
- program descriptor --
gui env

(# (* wite GQUI code here *)

#)

Our task will be to develop a simple texteditor that can open atext file, edit the file
and save the file. We would like an application that looks like the following (Motif
version):

File I

0

pen Harndler::<

Save lonSelect <
i # theText: BStyledText:
Uuit do thelindowl]l => fileSelectionllia

textFile,openRead:
textFile,=can
t# whiler:< (# do true—walue
do ch —> theText,put
#3:
theText[1-3theTextEditaor,conten

We will need a window to display the text in. gui env defines aw ndow pattern, that

53

guienv
application
outline

Texteditor
example

Window

54

Mjglner BETA System Tutorial

TextEditor

File menu

Quit item

we can use. We would like that this window is opened when the application starts up,
so in the do part of the specialization of gui env we open the window.

gui env
(# theWndow. @i ndow
(# ...
#)]
do t heW ndow. open;
#);

Inside the window we want a texteditor that can contain the text from the file. gui env
supplies at ext Edi t or for this purpose:

t heW ndow. @i ndow
(# thetextEditor: @extEditor
(# open::
(#
do t heW ndow. si ze -> Size;
True -> bindBottom True -> bindRi ght

#)
#)
open:: (# do thetextEditor.open #);
#) ;
do t heW ndow. open;
Thelines:
open: :
(#

do t heW ndow. size -> Size;
True -> bindBottom True -> bindRi ght
#);

means that we extend the open virtual of t ext Edi t or, set the size of thet ext Edi t or
to be same size as the window, and bind the t ext Edi t or to the bottom and right cor-
ners of the window.

The next thing we need to do, to complete the user interface is to make a menu. The
application should have a menu with three items: open a file, save the file, and quit
the application. gui env supplies a standard menubar on each window for this pur-
pose. We extend the standard menubar with one menu called Fi | e, and we make
three items in this menu called Open, Save, and Qui t .

menubar Type: :
(# fileMenu: @renu
(# openltem @renuitem

(# ... #);
saveltem @menuitem
(# ... #);
quitlitem @renuitem
(# ... #);
open: :
(#

do "File' -> nane;
openltem open; openlten{] -> append;
savel tem open; savelten{] -> append;
quitlitemopen; quitliten]{] -> append;
#) #)
open:: (# do fileMenu. open; fileMenu[] -> append #);
#)]

Like the t ext Edi t or , we extend the open virtual of theFi | e menu to open and ap-

pend the three items and to give the menu atitle.

Each menui t emhas two virtuals that needs to be extended: event Handl er and open.
For the quit item we do the following:

Graphical User Interface

55

quititem @renuitem
(# event Handl er:
(# onSelect::(# do Term nate #)
#),
open:: (# do 'Qit' -> nanme #);
#)

The event Handl er has a virtual called onSel ect that is invoked whenever this
menui t emis selected. We call Ter ni nat e (defined in gui env) to stop execution. The
open virtua is extended to give the item a name.

Finally, we need to do some file handling in the open and save items. The open item
does the following when selected

onSel ect : :
(# theText: @styl edText;
do theWndow{] -> fileSelectionDi alog -> textFile.naneg;
text Fi |l e. openRead,;
textFile.scan
(# while:: (# do true->val ue #);
do ch -> theText. put
#)
theText []->t heText Edi tor. contents. contents;
textFile.close;
#)

First we call fileSel ectionDi al og that opens a standard file open dialog and re-
turns a name of afile that we can open (we ignore errors, pressing cancel, etc.). We
open the file, read all the file content into a St yl edText and sets the St yl edText as
the content of the t ext Edi t or. Styl edText is a speciaization of Text with specifi-
cation of face, font, size, etc.

The save item does the following when sel ected:

onSel ect : :
(# theText: @ext;
do textFile.openWite;
t heText Edi t or. contents. contents->textFile. puttext;
textFile.close;
#)

Because Styl edText is a specialization of Text we can write the St yl edText con-
tents of the Text Edi t or directly to the file using the puttext oper at i on.

We open the samefile, write thet ext Edi t or content into the file and close thefile.
The complete code needed for this application is shown below.

ORIG@ N ' ~betal/guienv/vl. 4/ gui env'
| NCLUDE ' ~bet a/ gui env/v1. 4/fields
' ~bet a/ gui env/ v1l. 4/ st ddi al ogs
'~betal/basiclib/vl.5/file";
-- program descriptor --
guienv (* inherit from guienv *)
(# theWndow. @i ndow (* nake a wi ndow *)
(# menubar Type:: (* extend the menubar *)
(# fileMenu: @renu (* nmake a file nenu *)
(# textFile: @ile; (* the file we open and save *)
openltem @enuitem (* nake an open item*)
(# event Handl er:
(* extend the virtual that is called when
* this menu itemis selected *)
(# onSel ect: :
(# theText: @styl edText;
do theWndow{] -> fileSel ectionD al og
-> textFile.naneg;
text Fi |l e. openRead,;
textFile.scan
(# while:: (# do true->value #);

Open item

Standard file
open

Save item

The complete
code

56

Mjglner BETA System Tutorial

do ch -> theText. put
#) ;
theText[]->
t heText Edi t or. contents. contents;
textFile.close;
#) #)
open:: (# do 'Open' -> nane #);
#);
saveltem @enuitem (* nake a save item*)
(# event Handl er:
(# onSel ect ::
(# theText: @ext;
do textFile.openWite;
t heText Edi t or. contents. content s->
textFile.puttext;
textFile.close;
#) #) ;
open:: (# do 'Save' -> nane #);
#);
quititem @enuitem (* make a quit item™*)
(# event Handl er:
(# onSelect:: (# do Term nate #) #);
open:: (# do 'Qit' -> nane #);
#)
open:: (* extend the open virtual of filenenu
* to open the itens *)
(#
do 'File' -> nane;
openltem open; openlten{] -> append;
savel tem open; savelten{] -> append;
quitlitemopen; quitliteni] -> append;
#) #) ;
open:: (* extend the open virtual of the nenubar
* to open the filemenu *)
(# do fil eMenu.open; fileMenu[] -> append #);
#);
thetextEditor: @extEditor (* our text editor *)
(# open:: (* extend the open virtua
* to set the size and the placenment *)
(# do theW ndow. size -> Size
True -> bindBottom True -> bindRi ght
#) #)
open:: (* extend the wi ndow open virtua
* to open the textEditor *)
(# do thetextEditor.open #);
#);
do t heW ndow. open; (* open the w ndow when the appl. start up *)
#)

Program 17.1: TextEditor.bet

The three screen snapshots following below show how this application appears on
Windows NT, Motif (X11), and Macintosh after the program has loaded its own
source code for editing, and with the menu opened.

Graphical User Interface

57

Windows NT

H#:
open::< [# do 'Open' -> name #]; —

thetextEditor via
< X

do theWindow][] -> fileSelectionDialo E
textFile.name;
textFile.openHead;
textFile.scan
[# while::< [# do true->value #];
do ch -> theText.put
#):
theText[]->theTextEditor.contents.«
textFile.close;

&

" =

File I

Open

X Window System—M otif

Handler: i<

Save lonSelect: 1<

: C# theText: B5tyledText:

Uuit do thellindowl]l - fileSelectionllia

textFile,openRead:
textFile,=scan

t# whilez:< # do true—=value

do ch - theText,put

#3+
theText[1-stheTextEditaor, conten

58

Mjglner BETA System Tutorial

More information

Widgets

OSF/Motif

MotifEnv

M acintosh

(# theText: @Styled Text;

do theWindow(] = fileSelectionDialog -=
textFile.name;
textFile.openhead,

textFile.scan

(# whilen= (# do true-=value #);

dach - theText.put

#;
theText[]->theTextEditar.contents.cantent
textFile.close;

More details and examples about the GUIENV libraries can be found in [MIA 94-27].

17.2 MotifEnv

In this subsection we will show how to use the Motif specific user interface library.
Motif is a very large user interface toolkit, with user interface elements not easily ab-
stracted into a general device independent framework, so the Mjglner BETA system
includes alibrary for making Motif specific applications.

Xt Toolkits

Xt isaC-library top of Xlib, the low-level interface used in programming X Window
System applications. The purpose of Xt is to provide an object-oriented layer that
supports user-interface abstractions (windows, scrollbars, commands buttons, menus)
called widgets. A widget is a reusable, configurable piece of C-code that operates in-
dependently of the application except through prearranged interactions.

Xt contains the basic functionality to support widgets, i.e. an architectural model for
widgets that allow them to be written and used in an object-oriented fashion. Xt also
contains asmall core set of widgets.

A widget set is acollection of widgets build on top of Xt that provide commonly used
user-interface components tied together with a consistent appearance and user inter-
face. Several different widget sets from various sources exist. The Athena widget set
is one example. Others are Motif from Open Software Foundation (OSF) and OPEN
WINDOWS from Sun and AT&T.

The Motif widget set contains many user-interface components, including scroll bars,
menus, buttons, dialogs, and a wide variety of composite widgets. Motif has conven-
tions about the use of its widgets and gadgets, that lead to a consistent look among all
applications using Motif. Along with each Motif license comes an OS-/Motif Style
Guide with the documentation. This document contains recommendations for appli-
cation design and layout.

The Mjginer BETA System comes with object-oriented interfaces to these libraries,
Xt Env, AwEnv and Mot i f Env.

Using the MotifEnv Fragment

Thenotifenv filein' ~beta/ Xt/ v1. 9/ Moti f Env' simply defines the Mot i f Env pat-
tern for applications using the BETA interface to Motif. For each widget/gadget
wanted in the application, the files in the directory ' ~beta/ Xt/v1. 9/ motif/"',
defining the BETA interface to it, must be explicitly included.

Graphical User Interface 59

An application using ot i f env thus typically has the following outline:

ORIG@ N ' ~beta/ Xt/vl. 9/ MtifEnv';
| NCLUDE ' ~beta/ Xt/v1. 9/ notif/rowcol um'
" ~beta/ Xt/v1.9/ notif/pushbutton'
-- PROGRAM descriptor --
Mot i f Env
(# ...
do ...
#)

In this case the program is using the rowcolumn and pushbutton widgets.
The following small program shows how to make the traditional "Hello world" pro- hello.bet
gram using aMotif Label widget:

ORIG@ N ' ~beta/ Xt/vl.9/ motifenv' F_-

| NCLUDE ' ~beta/ Xt/v1.9/notif/l abel'
-- program descriptor --
Mot i f Env Hello world
(# hello: @abel;
do hello.init;
"Hello world" -> hello.label String;

#)
Program 17.2: Hello.bet

The border of the window, with grips for resizing the window, and the title bar with
buttons, is added by the window manager, in this case mwm, the Motif Window Man-
ager. The actual Label widget is the one showing the "Hello world" text.

The following example shows how to use the special purpose Motif Scale widget, Scale.bet
useful for adding, e.g., a potentiometer-like control to a panel of controls.

ORIA@ N ' ~betal/ Xt/ current/ notifenv': e
| NCLUDE ' ~beta/ Xt/ current/notif/scal e’
-- program descriptor --

Mot i f Env Volume
(# volune: @scal e
(# init::
(#
do O -> m ni mum
100 -> nmaxi mun 2 j
XMVERTI CAL -> orientation;
"Volume' -> titleString;
true -> showal ue;
#);
val ueChangedcCal | back: :
(#

do ' New vol une: -> screen. puttext;
dat a. val ue -> screen. putint;
screen. new i ne;
#);
#)
do volune.init;
#)

Program 17.3: Scale.bet

The val ueChangedcCal | back is called after the scale has been changed. In this case
the callback is extended and prints out the new value of the Scale (dat a. val ue).

More details and examples about the X11 libraries can be found in [MIA 91-16]. More information

Concurrent
coroutines

Pattern System

everyNthSecond

Declaring a
coroutine

18 Concurrent Library

Concurrent programming in BETA is supported by the syst enenv library. This li-
brary contains patterns for describing the BETA concepts of concurrent systems. The
basic ideas are:

1. Components (coroutines) can be executed concurrently.

2. A primitive semaphor e pattern is available for synchronization. The operations
on asenaphor e is executed as an indivisible unit.

3. An abstract pattern Monitor similar to the monitor proposed by Hoare and
Brinch-Hansen.

4. An abstract pattern Syst emis defined. Syst em defines communication between
systems by means of synchronized rendezvous. A concurrency imperative conc
and an alternation imperative al t are defined for syst em

18.1 Example

The following example of using the systenenv library makes three concurrent
coroutines that each sleeps for a specified number of seconds and then prints out the
seconds elapsed since startup. All three systems inherit from a generic system:

everyNt hSecond: System
(* inherit from System can run concurrently *)
(# N < Integer Val ue;
now. @ nteger;
do cycle
(#
do | NNER ever yNt hSecond;
N -> sleep; (* sleep for N seconds *)
now+N -> now, (* accunulate tinme *)
#)
#)
ever yNt hSecond inherits from system, i.e. it is able to run concurrently. The do-part
consists of a loop that calls | NNER, then sleeps for N seconds, and when activated
again, updates the time, and calls | NNER again. Notice, that N is defined as an | nt e-
ger Val ue.

Now we can make a coroutine that inherits from ever yNt hSecond like this:

fourth: @ everyNt hSecond
(* a co-routine that inherits fromeveryN hSecond *)
(# N: (# do 4 -> value #); (* sleep for 4 seconds *)
do 'fourth: ' -> puttext; now -> screen.putint; newine
#)

A coroutine is declared using the | * symbol. The declaration '@ ' means that we de-
clarefourth to be a static reference to a coroutine. The do-part will be called every
4'th second since fourth inherits from ever yNt hSecond and extends the | nte-
ger Val ue Nto be 4.

Finally, we need to start the coroutines concurrently. This is done by starting the
coroutine inside aconc pattern like this:

conc (* execute concurrently: *)
(# do ... fourth[]->start; ... #)

60

Concurrent Library 61

The execution of conc will not terminate until al the systems executed inside it has
terminated.

The complete program with three concurrent systems is shown in Program 18.1. No-
tice, that the program never terminates.

ORI G N ' ~bet a/ basi cl i b/v1.5/systenenv’
--- program descriptor ---
systenenv (* inherits from systenenv *)
(#
(* everyNthSecond calls INNER every N th second. *)
ever yNt hSecond: System
(* inherit from System can run concurrently *)
(# N < IntegerVal ue;
now. @ nteger;
do cycle
(#
do | NNER ever yNt hSecond,;
N -> sleep; (* sleep for N seconds *)
now+N -> now, (* accunulate tine *)
#);
#);
every: @ everyNthSecond
(* a co-routine that inherits fromeveryN hSecond *)
(# N:< (#do 1 -> value #); (* sleep for 1 second *)
do 'every: ' -> puttext; now -> screen.putint; newine;
#);
fourth: @ everyN hSecond
(* a co-routine that inherits fromeveryNt hSecond *)
(# N:< (# do 4 -> value #); (* sleep for 4 seconds *)
do 'fourth: ' -> puttext; now -> screen.putint; new i ne;
#);
eighth: @ everyN hSecond
(* a co-routine that inherits fromeveryNt hSecond *)
(# N:< (# do 8 -> value #); (* sleep for 8 seconds *)
do "eighth: ' -> puttext; now -> screen.putint; new i ne;
#);
do
conc (* execute concurrently: *)
(# do every[]->start; fourth[]->start; eighth[]->start #);
(* terminates when all systens stops. In this case: never *)
#)

Program 18.1: Seconds.bet

Output of running Program 18.1 for 20 seconds:

ni | % Seconds

every: 0
fourth: O
eighth: 0
every: 1
every: 2
every: 3
fourth: 4
every: 4
every: 5
every: 6
every: 7
eighth: 8
fourth: 8
every: 8
every: 9
every: 10
every: 11

fourth: 12

62

Mjglner BETA System Tutorial

A simple clock

time library

every: 12
every: 13
every: 14
every: 15
ei ghth: 16
fourth: 16
every: 16
every: 17
every: 18
every: 19
fourth: 20

18.2 Concurrency and User Interface Environments

Graphical user interface environments are usually event-driven in the sense that ac-
tions in the program are executed as a response to user input events. To handle this, a
number of separate implementations of syst emenv exist for the different user inter-
face libraries, such asnot i f Env and gui env:

Use ~bet a/ basi cl i b/ v1. 5/ syst emenv as origin for programs not using event-
driven user-interface libraries.

Use ~bet a/ Xt/ v1. 5/ xsyst emenv as origin for programs using the Motif user
interface library.

Use ~bet a/ gui env/ v1. 5/ gui envsystenenv as origin for programs using
GUIEnv interface library.

Please note, that programs should only use one of the syst enenv, xsyst enenv, and
gui envsyst emenv fragments.

Suppose that we like to extend the texteditor above with a clock that should be up-
dated every second. A clock can easily be made using the basic syst emenv:

ORIG@ N '~beta/basiclib/vl.5/systenmenv'
I NCLUDE ' ~bet a/sysutils/v1l.5/tine'
-- program descriptor --
syst emenv
(#
updat ed ock: @ System

do 1 -> sleep;
systentinme -> fornmattine -> putline
#)
#)
do updat ed ock[] -> fork
#)

Program 18.2: Clock.bet

Here we simply print out the current system time on the screen. Notice, that we have
included a new library called time in '~bet a/ sysutils/v1.5/time' . This library
contains facilities for getting the date and time, time usage, and for formatting times
for nice printing. Running the program shown above gives the following result:

Tue Aug 23 11:48:35 1994
Tue Aug 23 11:48:36 1994
Tue Aug 23 11:48:37 1994
Tue Aug 23 11:48:38 1994
Tue Aug 23 11:48:39 1994
Tue Aug 23 11:48:40 1994
Tue Aug 23 11:48:41 1994
Tue Aug 23 11:48:42 1994
Tue Aug 23 11:48:43 1994

Concurrent Library

63

Tue Aug 23 11:48:44 1994
Tue Aug 23 11:48:45 1994
Tue Aug 23 11:48:46 1994
Tue Aug 23 11:48:47 1994
Tue Aug 23 11:48:48 1994
Tue Aug 23 11:48:49 1994

Now we want to integrate this clock in our GUIEnv texteditor program, so we can al-
ways see the time in the low left corner of the window. We need to use the
'~bet a/ gui env/ v1. 4/ gui envsyst emenv':

ORIGA N ' ~betal/guienv/vl. 4/ gui envsyst enenv';
| NCLUDE ' ~bet a/ gui env/v1. 4/fiel ds'
' ~bet a/ gui env/v1. 4/ st ddi al ogs'
' ~beta/basiclib/vl.5/file
' ~beta/sysutils/v1l.5/tine
-- program descriptor --
syst enenv
(#
set WndowkEnv:: (* tell systenmenv that nyguienv is the
* the graphical user interface
*

(# do myguienv[] -> theWndoweEnv[] #);

updat ed ock: @ System

do 1 -> sleep;
systemtinme -> formattine -> ... ;
(* put tine into the clock *)
#)
#);

nygui env: @uienv (* inherit from guienv *)
(# (* guienv code as before *)
#)

do (* fork updateC ock as a separate system *)
updat ed ock[] -> fork;
#)

We need to specify to syst emenv what graphical user interface system we are using.
Thisis done by extending the virtual set W ndowenv like the following:

set WndowEnv: : (# do mygui env[] -> theW ndowenv[] #);

In order to do that, we have changed the gui env into a static object called nygui env.
mygui env will automatically be started by syst emenv.

Finally, we need to create a user interface element that can show the time. We use a
st ati cText, that we position below the Text Edi t or field:

cl ock: @taticText
(# open::
(# w, h: @nteger;
do systentinme -> formattine -> | abel;
t heW ndow. si ze -> (w, h);
(5,h-16) -> position; (50,15) -> size;
True -> BindBottom False -> BindTop;
#)
#),

The complete program is:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui envsyst enmenv' ;
| NCLUDE ' ~bet a/ gui env/v1. 4/fields’
' ~bet a/ gui env/v1. 4/ st ddi al ogs’

setWindowEnv

staticText

Complete code

64 Mjglner BETA System Tutorial

'~betal/basiclib/vl.5/file
' ~beta/ sysutils/vl.5/tine';
-- program Descriptor --
syst enkEnv
(#
set WndowkEnv::< (# do nyguienv[]->theWndowenv[] #);
updat ed ock: @ System
(#
do
cycle
(# theText: @btyl edText;
do 1->sl eep;
systentinme->formatti me-> nygui env.t heW ndow. cl ock. | abel
#)]
#)
mygui env: @uienv (* inherit from guienv *)
(# theWndow. @u ndow (* nmake a w ndow *)
(# nmenubar Type:: (* extend the nenubar *)
(# fileMenu: @renu (* make a file menu *)
(# textFile: @ile;
openltem @renuitem (* make an open item*)
(# event Handl er:
(* extend the virtual that is called *)
(# onSel ect::
(* this menu itemis selected *)
(# theText: @btyl edText
do theW ndow] ->
fileSel ectionbDi al og->
text Fi |l e. nane;
text Fi | e. openRead,;
textFil e.scan
(# while::(#do true->val ue#);
do ch->t heText . put
#);
theText[]->
t heText Edi t or. contents.
cont ent s;
textFil e.cl ose;
#) #) ;
open:: (# do 'Open'->nane #);
#);
saveltem @renuitem (* nmake a save item?*)
(# event Handl er:
(* extend the virtual that is called *)
(# onSel ect::
(* this menu itemis selected *)
(# theText: @ext;
do
textFile.openWite;
t heText Edi t or. contents.
contents->
textFile.puttext;
textFile.cl ose;
#)
#)
open:: (# do 'Save'->nane #);
#);
quititem @renuitem (* make a quit item *)
(# event Handl er:
(# onSelect:: (# do Terminate #) #);
open:: (# do 'Qit'->nanme #);
#)]
open: :
(* extend the open virtual of filenenu
* to open the itenms *)
(#

Concurrent Library

65

do 'File'->nane;
openl t em open;
openl teni]->append;
savel t em open;
savel tenf] - >append;
qui tltem open;
quitlteni]->append;
#)
#);
open: :
(* extend the open virtual of the nmenubar
* to open the filenmenu *)
(# do fil eMenu.open; fileMenu[]->append #);

#)
thetextEditor: @extEditor (* our text editor *)
(# open::
(* extend the open virtual to set the size
* and the placenent *)
(# w, h: @nteger;
do t heW ndow. si ze->(w, h);
(w, h-20) - >Si ze;
Tr ue- >bi ndBot t om
Tr ue- >bi ndRi ght
#)
#);
cl ock: @taticText
(# open::
(# w, h: @nteger;
do systentinme->formattine->| abel;
t heW ndow. si ze->(w, h) ;
(5, h-16) - >posi tion;
(300, 15) - >si ze;
Tr ue- >Bi ndBot t om
Fal se- >Bi ndTop;
#);
#);
open: :

(* extend the wi ndow open virtual
* to open the textEditor *)
(# do thetextEditor.open; clock.open; #);
#)
do t heW ndow. open;
(* open the wi ndow when the application start up *)
#)
do updat ed ock[]->fork;
#)

Program 18.3: ClockTextEditor.bet

The following figure shows a snapshot of the program running on Maotif:

66 Mjglner BETA System Tutorial

ockTextEdito

18.3 Changes from the Original Design

The abstractions defined here are based on the ones described in chapter 12 of the
BETA book. The implementation is identical to the design in the BETA book, except
for the following changes:

1. Thesyntax of fork is
S[]->fork andnot S. f or k.
2. Thesyntax of conc is

conc(# do S1[]->start; S2[]->start; S3[]->start #)
andnotconc(# do Sl.start; S2.start; S3.start #).
3. Thesyntax of al t is

alt(# do Sl[]->start; S2[]->start; S3[]->start #)
andnotal t (# do Sl.start; S2.start; S3.start #).

New facilities This implementation of syst emenv includes some new facilities, not described in the
BETA book:

4. semaphor e had an additional attribute: t r yP, which is a non-blocking call of p.

5. Inadditionto s[]->fork,s[]->kill ispossible, and in addition to pause, 100
-> sl eep ispossible.

6. systemhas anew virtua attribute, onKi I | ed, that is invoked before the system
terminates

7. systenenv has a new virtual attribute, deadl ocked, that is invoked if all pro-
cesses are deadlocked.

8. Finally, syst enenv defines three new attributes to cope with event driven user
interfaces. wi ndowEnvType, t heW ndowenv, and set W ndowenv. See further de-
tails on cooperation with user interface environments below.

The Concurrency |In order to implement real concurrency, an interrupt mechanism must be imple-

is Simulated mented. This is currently not done. A component/system will thus keep the control
until it makes an explicit or implicit SUSPEND. An implicit SUSPEND is made when a
component must wait for asenmaphor e, or executes the pause and sl eep patterns.

More information ~ The syst emenv libraries are thoroughly described in the manual [MI1A 94-25]

19 The Fragment System

Every BETA program uses the Fragment System. A fragment can be viewed as a
piece of a BETA program — a module. Fragments are organized in files. A file may
consist of one or more fragments.

The basic BETA environment, called bet aenv, supplies basic BETA patterns, such as
integer, char, boolean, and text. In order to use these basic patterns, the program must
specify that the bet aenv environment is to be used. The following example illustrates
how:

ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv’
---program descriptor---

(#

do '"Hello World!'->putline;

#)

Program 19.1: HelloWorld.bet

The example consists of two parts, the specification of ORI G N and the descri pt or 4
called pr ogr am

The specification of ORIG N tells that the program uses the fragment file ORIGIN
~bet a/ basi cl i b/ v1. 5/ bet aenv. The descri pt or programtells that following the
line

---program descriptor--- program slot

comes a BETA descriptor, i.e. (# ... #), that will be named pr ogram The name is
used to identify the descri pt or for the purpose of binding it to an unbound hole in
the bet aenv environment. A simple bet aenv environment could have the following
outline:

(* The basic BETA environnment betaenv *) betaenv
(# ...

put: (# c: @har; enter c do ... #);

puttext: (# t: "text; enter t[] do ... #);

putline: (# t: "text; enter t[] do t[]->puttext; new ine #);

newine: (# do ... #);

text: (# ... #);

<<SLOT LIB: Attributes>>

do (* initialize for execution *)
<<SLOT program descri ptor>>
(* term nate execution *)

#)

The bet aenv environment consists of a single descriptor with two holes—slots. One program and LIB
named pr ogr amof type descri pt or and one named LI B of type At tri but es. slots

The progr amslot is empty and can be filled (or bound) by aBETA program by defin-
ing andescri ptor like:

4 descriptor isan aias for vj ect Descri ptor, i.e.
- - program (oj ect Descri ptor-- isasolegal.

67

68 Mjglner BETA System Tutorial

---program descriptor---
(# ... #)

as illustrated above. Every BETA program must have exactly one such construct in
order to fill the empty slot in betaenv.

Filling slots Filling a slot can be compared to a textual replacement®. The Hel | o Wor | d example
program above, thus replaces the pr ogr amslot in bet aenv, resulting in the following
expanded BETA program:

(* The basic BETA environnent betaenv *)

(# ...
put: (# c: @har; enter ¢ do ... #);
puttext: (# t: "text; enter t[] do ... #);
putline: (# t: "“text; enter t[] do t[]->puttext; new ine #);
newline: (# do ... #);
text: (# ... #);
do .(;*.initialize for execution *)
(#
do ‘Hello World!’->putline;
#)

(* terminate execution *)
#)

Program 19.2: HelloWorld with filled program slot

The LI B slot can be used to define libraries that may used in other BETA programs. If
we want to add an operation called put Boxed to the basic environment, we can fill the

LI Bdot:
Defining a library ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv'
---LIB: Attributes---
put Boxed:

(* print the text with a box surroundi ng:
* '"text'->putBoxed results in '[text]’
*

(# t: "Text;

enter t[]

do '['->put; t[]-> puttext; ']'->put;

#)

Program 19.3: putBoxed.bet

The Hel | owor | d program can then use thislibrary by including it:

Using alibrary ORI G N ' ~bet a/ basi cl i b/ v1. 5/ bet aenv' ;
I NCLUDE ' put Boxed'
---program descriptor---
(#
do ‘Hello World!’ ->put Boxed;
#)

Program 19.4: HelloWorld.bet

Resulting in the following output:
[Hello World!]

The Hel | oWor | d example program using the putBoxed library, results in the follow-
ing expanded BETA program:

5 Textual replacement is not exactly correct due to the scope rules. Please see the BETA book
chapter 17 for adescription of these rules.

The Fragment System 69
(* The basi c BETA environnent betaenv *)
(# ...
put: (# c: @har; enter c¢c do ... #);
puttext: (# t: "text; enter t[] do ... #);
putline: (# t: "text; enter t[] do t[]->puttext; new ine #);
newline: (# do ... #);
text: (# ... #);
put Boxed:
(* print the text with a box surroundi ng:
* "text'->putBoxed results in '[text]’
*
(# t: "Text;
enter t[]
do '"['->put; t[]-> puttext; ']'->put;
#)
do k;.initialize for execution *)
(#
do ‘Hello World!" ->putline;
#)
(* term nate execution *)
#)
Program 19.5: Hel | oWor | d with filled pr ogr amand LI B slot
The program can be made even more ssimpler by having ORI G Nin the put Boxed. bet
file:
ORI G N ' put Boxed'
---program descriptor---
(#
do ‘Hello Worl d!’ ->put Boxed;
#)
This works because the put Boxed. bet has ORI G N in the bet aenv environment, so
the Hel | ovor | d program will also have access to the bet aenv environment.
The---LIB: Attributes--- may bemultiply specified in the same file or in differ-
ent files. The way to make libraries in BETA is thus to define the pattern declarations
in afragment called LI B. The file containing the --- LI B: Attri butes--- fragment
can then be included in your program and the declarations can be used.
19.1 Interface and Implementation
The fragment system can be used to separate interface from implementation. In the
put Boxed example above we included the implementation of the operation in the in-
terface. We can move the implementation of put Boxed to another file using adopart
dlot. Thisis specified as follows:
put Boxed: Interface
(* print the text with a box surroundi ng:
* "text'->putBoxed results in '[text]’
(# t: "Text;
enter t[]
<<SLOT put Boxed: dopart>>
#);
Here we have described only the interface of put Boxed, i.e. it can be seen that the op-
eration takes a text as a argument (and the comment states that the operation will print
the text with a surrounding box). The implementation is hidden. The implementation
can be described in a dopart fragment:
- - - put Boxed: dopart--- Implementation

do '['->put; t[]-> puttext; ']'->put;

70

Mjglner BETA System Tutorial

Separate
compilation

In order to make things work we must specify where the implementation can be
found. Thisis done using a BODY specification in the put Boxed. bet file:

ORI G N ' ~bet a/ basi cli b/vl1.5/betaenv';
BODY ' put BoxedBody'
---LIB: Attributes---
put Boxed:
(* print the text with a box surroundi ng:
* '"text'->putBoxed results in '[text]’

(# t: "Text;

enter t[]

<<SLOT put Boxed: dopart >>
#)

Program 19.6: putBoxed.bet

The file with the - - - put Boxed: dopart--- fragment must specify where the dopart
fragment isto befilled. Thisis done using the ORI G N:

ORI G N ' put Boxed'
- --put Boxed: dopart---
do "['->put; t[]-> puttext; ']'->put;

Program 19.7: putBoxedBody.bet

Another major advantage of separating the implementation from the interface is sepa-
rate compilation. The put Boxed. bet and the put BoxedBody. bet file can be sepa
rately compiled, and the put BoxedBody. bet file can be changed and recompiled
without recompiling the interface file put Boxed. bet or any of the programs that are
using the library put Boxed.

The Hel | ovr | d program using the putBoxed library has not changed:

ORI G N ' ~bet a/ basi cli b/vl1.5/betaenv';
| NCLUDE ' put Boxed'

---program descriptor---

(#

do ‘Hello World!’ ->put Boxed;

#)

Program 19.8: HelloWorld.bet
And the expanded BETA program, using the files. betaenv, Hel | oWr | d, put Boxed,
and put BoxedBody is (exactly as above):

(* The basic BETA environnent betaenv *)

(# ...
put: (# c: @har; enter ¢ do ... #);
puttext: (# t: "text; enter t[] do ... #);
putline: (# t: "“text; enter t[] do t[]->puttext; newline #);
newine: (# do ... #);
text: (# ... #);
put Boxed:
(* print the text with a box surroundi ng:
* '"text'->putBoxed results in '[text]’
(# t: ~Text;
enter t[]
do '['->put; t[]-> puttext; ']'->put;
#);

do .(;.initialize for execution *)
(#
do ‘Hello World!’->putline;

The Fragment System 71

#)
(* terminate execution *)
#)

Program 19.9: Hel | oWor | d with filled pr ogr amand LI B slot

The fragment system is described in abstract terms in the BETA book [Madsen 93]. More information
That description also suggests many ideas of how to use the fragment system. The

current implementation of the fragment system is described in the compiler manual

[MIA 90-2].

References

[Knudsen 94]
[Macdsen 93]
[MIA 90-2]
[MIA 90-4]
[MIA 90-6]
[MIA 90-8]
[MIA 91-16]

[MIA 91-20]

[MIA 92-22]

[MIA 94-25]

[MIA 94-26]

[MIA 94-27]

J. L. Knudsen, M. Léfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjalner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjglner Informatics. The Mjglner BETA System: BETA
Compiler Reference Manual Mjglner Informatics Report
MIA 90-2.

Mjglner Informatics: The Mjglner BETA System: Using
BETA on UNIX Systems, Mjalner Informatics Report MIA
90-4.

Mjglner Informatics: The Mjglner BETA System: Using
BETA on the Macintosh, Mjginer Informatics Report MIA
90-6.

Mjglner Informatics: The Mjginer BETA System: Basic Li-
braries, Reference Manual, Mjalner Informatics Report
MIA 90-8

Mjglner Informatics: The Mjglner BETA System—X Win-
dow System Libraries, Mjginerinformatics Report MIA
91-16.

Mjglner Informatics: The Mjginer BETA System — Persis-
tent Sore, MjglnerInformatics Report MIA 91-20.

Mjglner Informatics. The Mjglner BETA System — Con-
tainer Libraries, Reference Manual, Mj@lnerinformatics
Report MIA 92-22.

Mjglner Informatics. The Mjginer BETA System — Distri-
bution Mjginerinformatics Report MIA 94-25.

Mjglner Informatics. The Mjginer BETA System — BETA
Language Introduction Mjg@linerinformatics Report MIA
94-26.

Mjglner Informatics: The Mjginer BETA System — GUIEnv
Librarues Mjginerinformatics Report MIA 94-27.

73

Index

alt 66

betaenv 1, 2, 67

BODY 69
BooleanObject 25
Booleans 6

Characters 6

CharObject 25
Command-line arguments 31
Comparing texts 37
Complex evaluations 15
conc 66

Concurrency 19
Concurrent 60
Concurrent coroutines 60
Constants 6, 16

container 41

Control Characters 6
coroutine 60

Create and execute 23
Create and return areference 24
cString 48

cStruct 48

Declarations 1

Declaring a coroutine 60
Defining alibrary 68
Descriptor 19

Directory 35

Directory attributes 35
Dynamic reference to static object 23
Dynamic references 22
Encapsulation 21
evaluation 6

Evaluations 15
Exception 45

external pattern 48
external Record 48

File 30

File attributes 30

File Exception 31

File menu 54

Filling slots 68

for 9

for imperative 9

fork and not S.fork. 66
Formatted Input and Output 39
Formatted output 12
fragment system 21, 67
Function results 14
Graphical User Interface 53
GUIEnv 53

hashtable 42

if 11

75

if imperative 9
Implementation 69
INCLUDE 4, 68
Inheritance 19

Integer 6

IntegerObject 25
Interface 69

labeled imperative 13
LIB slots 67

List41

Local function 20

Local state 16
Macintosh 53

Making alibrary 51
Math Library 6

Monitor 60

MotifEnv 58
Multidimensional Repetitions 28
New operator 23
Notification 45
numberio 5

Object reference repetitions 26
object-descriptor 19
Object-oriented concepts 19
OBJFILE 49
Operations on a persistent store 51
operationson List 41
Operator priority 6
ORIGIN 4, 67
OSF/Motif 58
Parameter list 9

Pattern 7

pattern declaration 19
persistence 51

Primitive Types 25
Procedure 8, 16
Procedure arguments 11
program slot 67

Quick sort 26

Real Object 25

Reals6

recursion 27

Reference operator 22
repetitions 26

restart 13

Screen Output 1, 4
semaphore 60, 66
Separate compilation 70
Simpletypes 3

Standard file open 55
Statements 1

Static and dynamic references 22

76

Mjglner BETA System Tutorial

Static Semantic Errors 4
Static variable declarations 20
Static Variables 4
statically nested 27

Stop 36

Structural equivalence 20
Structured data 20
System 60

systemenv 60

Text 6, 37

Text operations 39

TextEditor 54

type 16

Type Compatibility 4, 7
Using alibrary 68
Vaucher i

Whileloop 13
Widgets 58

Window 54
Windows 53

X Window System 53
Xt Toolkits 58

