
Exam Question Examples 2022

Henrik Bærbak Christensen

November 28, 2022

1

0.1 Test-driven development.

The Breakthrough game is played on a standard chess board,
using 16 white and 16 black pawns that are initially arranged
like in the figure on the right.

The rules of movement are simple. White player begins. A
piece may move one square straight or diagonally forward if
that square is empty. A piece, however, may only capture an
opponent piece diagonally. When capturing, the opponent piece
is removed from the board and the player’s piece takes its po-
sition, as you do in chess.

Using a TDD process, the methods covering basic board and
piece storage and turn handling have already been been devel-
oped in a class implementing the Breakthrough interface:� �

1 public i n t e r f a c e Breakthrough {
2 / * * Enumerat ion o f t h e t h r e e t y p e s o f ’ p i e c e s ’ t h a t
3 i s p o s s i b l e on a g i v e n l o c a t i o n on t h e c h e s s b o a r d :
4 b l a c k , whi te , o r no p i e c e * /
5 public s t a t i c enum PieceType { BLACK, WHITE, NONE} ;
6 / * * Enumerat ion o f t h e two t y p e s o f p l a y e r s in t h e game ,
7 e i t h e r w h i t e o r b l a c k * /
8 public s t a t i c enum PlayerType { BLACK, WHITE } ;
9

10 / * * Return t h e t y p e o f p i e c e on a g i v e n (row , column) on
11 t h e c h e s s b o a r d .
12 @return t h e t y p e o f p i e c e on t h e l o c a t i o n . * /
13 public PieceType getPieceAt (i n t row , i n t column) ;
14
15 / * * Return t h e p l a y e r t h a t i s in turn , i . e . a l l o w e d
16 t o move .
17 @return t h e p l a y e r t h a t may move a p i e c e nex t * /
18 public PlayerType getPlayerInTurn () ;
19
20 / * * V a l i d a t e a move from a g i v e n l o c a t i o n (fromRow , fromColumn) t o a
21 new l o c a t i o n (toRow , toColumn) . A move i s i n v a l i d i f you t r y t o
22 move your opponent ’ s p i e c e s o r t h e move d o e s not f o l l o w t h e
23 r u l e s , s e e t h e e x e r c i s e s p e c i f i c a t i o n . PRECONDITION : t h e
24 (row , column) c o o r d i n a t e s a r e v a l i d p o s i t i t i o n s , t h a t i s , a l l
25 be tween (0 . . 7) .
26 @return t r u e i f t h e move i s v a l i d , f a l s e o t h e r w i s e * /
27 public boolean isMoveValid (i n t fromRow , i n t fromColumn ,
28 i n t toRow , i n t toColumn) ;
29
30 }� �

You are asked to start implementing the isMoveValid method using TDD. You can assume
method getPlayerInTurn() and getPieceAt(row,column) are correctly implemented.

You are asked to describe a preliminary plan for a test-driven development effort. You should
use terminology, techniques, and tools from the course to:

– Sketch a test list, and outline some plausible initial iterations.
– Cover steps and TDD principles in one or two initial interations, time permitting, includ-

ing central Java code fragments.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

2

0.2 Test-driven development.

Consider the following specification:� �
1 public i n t e r f a c e FanControl {
2 / * * Return t h e f r e q u e n c y o f t h e c o o l i n g f a n g i v e n t h e
3 t e m p e r a t u r e o f a i r and l i q u i d in a c h e m i c a l chamber .
4 The i d e a l l i q u i d t e m p e r a t u r e i s around 75 d e g r e e s .
5
6 The f r e q u e n c y (r e t u r n v a l u e) i s c a l c u l a t e d as f o l l o w s
7 (in o r d e r o f p r e c e d e n c e) :
8
9 i f TempLiquid > 90 r e t u r n 9999 (ALERT)

10 i f TempLiquid > 80 r e t u r n 500 (Max c o o l i n g)
11 i f TempLiquid < 70 r e t u r n 0 (No c o o l i n g)
12 o t h e r w i s e r e t u r n (TempLiquid −70)*50
13
14 The a i r t e m p e r a t u r e may o v e r r u l e t h e a b o v e c a l c u l a t i o n :
15 i f TempAir > 100 r e t u r n 9999
16 i f TempAir > 90 r e t u r n 500
17 * /
18 public i n t fanControl (double TempAir , double TempLiquid) ;
19 }� �

You are asked to describe a preliminary plan for a test-driven development effort. You should
use terminology, techniques, and tools from the course to:

– Sketch a test list, and outline some plausible initial iterations.
– Cover steps and TDD principles in one or two initial interations, time permitting, includ-

ing central Java code fragments.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

3

0.3 Test-driven Development

We have been asked to develop a tax calculator which can compute (simplified) Danish tax
for a person. The tax consists of two parts: bottom-bracket tax and labor market contribution (Da:
bundskat og arbejdsmarkedbidrag) which is calculated based upon income, both salary income
and capital income (Da: lønindkomst og kapitalindkomst (dvs. renteindtægter og -udgifter)).

The bottom-bracket (BB) tax is a 15% tax of salary income above a 45.000 Dkr. deduction (Da:
bundfradrag) (i.e., you pay no tax of the ’first’ 45.000 you earn.) You also pay 15% tax of any
positive capital income (i.e. no tax if capital income is negative, but tax on any capital income
above 0).

Example: Hans has salary income = 55.000 and capital income = 10.000, then the BB tax is 15%
of (55.000 - 45.000 + 10.000).

The labor market (LM) tax is an 10% tax of the salary income. However, if the income is from
public benefits (Da: overførselsindkomst, eg. SU, pension, or kontanthjælp), you do not pay
this tax. You do not pay this tax on capital income either.

Example: Bente has a salary income (from a job) = 55.000 and capital income = 10.000, then the
LM tax is 10% of 55.000.

Example: Carl has a salary income (from public benefits) = 55.000 and capital income = 10.000,
then the LM tax is 0.

Consider the Java method, which can compute the total of the two taxes (BB+LM) for a person:� �
1 public i n t e r f a c e TaxCalculator {
2 / * * C a l c u l a t e combined bottom − b r a k e t and l a b o r marke t t a x .
3 @throws I l l e g a l A r g u m e n t E x c e p t i o n i f t h e s a l a r y income i s n e g a t i v e
4 * /
5 public i n t c a l c u l a t e T a x (i n t salaryIncome , boolean i s P u b l i c B e n e f i t ,
6 i n t capi ta l Income)
7 throws I l legalArgumentException {
8 }� �

You are asked to describe a preliminary plan for a test-driven development effort. You should
use terminology, techniques, and tools from the course to:

– Sketch a test list, and outline some plausible initial iterations.
– Cover steps and TDD principles in one or two initial interations, time permitting, includ-

ing central Java code fragments.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

4

0.4 Systematic black-box testing.

The Breakthrough game is played on a standard chess board,
using 16 white and 16 black pawns that are initially arranged
like in the figure on the right.

The rules of movement are simple. White player begins. A
piece may move one square straight or diagonally forward if
that square is empty. A piece, however, may only capture an
opponent piece diagonally. When capturing, the opponent piece
is removed from the board and the player’s piece takes its po-
sition, as you do in chess.

The interface of a FACADE for the game is shown below.� �
1 public i n t e r f a c e Breakthrough {
2 / * * Enumerat ion o f t h e t h r e e t y p e s o f ’ p i e c e s ’ t h a t
3 i s p o s s i b l e on a g i v e n l o c a t i o n on t h e c h e s s b o a r d :
4 b l a c k , whi te , o r no p i e c e * /
5 public s t a t i c enum PieceType { BLACK, WHITE, NONE} ;
6 / * * Enumerat ion o f t h e two t y p e s o f p l a y e r s in t h e game ,
7 e i t h e r w h i t e o r b l a c k * /
8 public s t a t i c enum PlayerType { BLACK, WHITE } ;
9

10 / * * Return t h e t y p e o f p i e c e on a g i v e n (row , column) on
11 t h e c h e s s b o a r d .
12 @return t h e t y p e o f p i e c e on t h e l o c a t i o n . * /
13 public PieceType getPieceAt (i n t row , i n t column) ;
14
15 / * * Return t h e p l a y e r t h a t i s in turn , i . e . a l l o w e d
16 t o move .
17 @return t h e p l a y e r t h a t may move a p i e c e nex t * /
18 public PlayerType getPlayerInTurn () ;
19
20 / * * V a l i d a t e a move from a g i v e n l o c a t i o n (fromRow , fromColumn) t o a
21 new l o c a t i o n (toRow , toColumn) . A move i s i n v a l i d i f you t r y t o
22 move your opponent ’ s p i e c e s o r t h e move d o e s not f o l l o w t h e
23 r u l e s , s e e t h e e x e r c i s e s p e c i f i c a t i o n . PRECONDITION : t h e
24 (row , column) c o o r d i n a t e s a r e v a l i d p o s i t i t i o n s , t h a t i s , a l l
25 be tween (0 . . 7) .
26 @return t r u e i f t h e move i s v a l i d , f a l s e o t h e r w i s e * /
27 public boolean isMoveValid (i n t fromRow , i n t fromColumn ,
28 i n t toRow , i n t toColumn) ;
29
30 }� �

You are asked to develop a set of test cases using the equivalence class technique of method
isMoveValid.

You are asked use terminology, techniques, and tools from the course to:

– Outline the conditions in the specification and derive an equivalence class table and gen-
erate test cases for a systematic black-box testing.

– Argue for your equivalence classes and choices.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

5

0.5 Systematic black-box testing.

Consider the following specification:� �
1 public i n t e r f a c e FanControl {
2 / * * Return t h e f r e q u e n c y o f t h e c o o l i n g f a n g i v e n t h e
3 t e m p e r a t u r e o f a i r and l i q u i d in a c h e m i c a l chamber .
4 The i d e a l l i q u i d t e m p e r a t u r e i s around 75 d e g r e e s .
5
6 The f r e q u e n c y (r e t u r n v a l u e) i s c a l c u l a t e d as f o l l o w s
7 (in o r d e r o f p r e c e d e n c e) :
8
9 i f TempLiquid > 90 r e t u r n 9999 (ALERT)

10 i f TempLiquid > 80 r e t u r n 500 (Max c o o l i n g)
11 i f TempLiquid < 70 r e t u r n 0 (No c o o l i n g)
12 o t h e r w i s e r e t u r n (TempLiquid −70)*50
13
14 The a i r t e m p e r a t u r e may o v e r r u l e t h e a b o v e c a l c u l a t i o n :
15 i f TempAir > 100 r e t u r n 9999
16 i f TempAir > 90 r e t u r n 500
17 * /
18 public i n t fanControl (double TempAir , double TempLiquid) ;
19 }� �

You are asked use terminology, techniques, and tools from the course to:

– Outline the conditions in the specification and derive an equivalence class table and gen-
erate test cases for a systematic black-box testing.

– Argue for your equivalence classes and choices.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

6

0.6 Variability Management.

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked use terminology, techniques, and tools for designing for variability to:

– Analyze the code fragment with respect to benefits and liabilities.
– Classify the techniques used to handle variability.
– Present an alternative design that improves maintainability and flexibility; and sketch

central refactorings in Java.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics.

7

0.7 Variability management

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked use terminology, techniques, and tools for designing for variability to:

– Analyze the code fragment with respect to benefits and liabilities.
– Classify the techniques used to handle variability.
– Present an alternative design that improves maintainability and flexibility; and sketch

central refactorings in Java.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics.

8

0.8 Test Doubles and unit/integration testing

The hardware producer of a seven segment LED display provides a very low-level interface for
turning on each of the seven LED (light-emitting diode) segments on or of by a Java interface:� �

1 public i n t e r f a c e SevenSegment {
2 / * * turn a LED on or o f f .
3 * @param l e d t h e number o f t h e LED . Range i s 0 t o 6 . The LEDs a r e
4 * numbered t o p t o bottom , l e f t t o r i g h t . That i s , t h e top ,
5 * h o r i z o n t a l , LED i s 0 , t h e t o p l e f t LED i s 1 , e t c .
6 * @param on i f t r u e t h e LED i s tur ned on o t h e r w i s e i t i s tu rned
7 * o f f .
8 * /
9 void setLED (i n t led , boolean on) ;

10 }� �
As an example, to display “0” as in the figure below, we would have to write:� �

1 d . setLED (0 , t rue) ; d . setLED (1 , t rue) ; d . setLED (2 , t rue) ; d . setLED (3 , f a l s e) ;
2 d . setLED (4 , t rue) ; d . setLED (5 , t rue) ; d . setLED (6 , t rue) ;� �

Clearly, this is much too cumbersome in practice, so it is much better to define an abstraction
that can turn on and off the proper LEDs for our ten numbers 0 to 9:� �

1 public i n t e r f a c e NumberDisplay {
2 / * * d i s p l a y a number on a s e v e n segment .
3 * @param number t h e number t o d i s p l a y .
4 * P r e c o n d i t i o n : number s h o u l d be in t h e range 0 t o 9 .
5 * /
6 void display (i n t number) ;
7 }� �

Thus, the code above would simply become: d2.display(0);

You are asked to use the terminology and techniques of test doubles to:

– Sketch a design that allows TDD and automated testing of the implementation of the
NumberDisplay interface, using UML and Java.

– Discuss concepts introduced from a theoretical viewpoint.
– Classify and discuss the developed doubles(s) according to the classification of Meszaros

(Section 12.6 in FRS 2nd Edition).
– Relate to other topics.

9

0.9 Test Doubles and Unit/Integration Testing.

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked to use terminology, techniques, and tools for test doubles and unit/integration
testing to:

– Analyze the specification above with respect to its suitability for doing automatic testing.
– Use UML and Java code to present an alternative design and implementation sketch that

improves its ability for doing automated testing.
– Discuss the concepts of test doubles and unit/integration tests in relation to the outlined

case.
– Relate to other topics.

10

0.10 Design patterns

Consider the the simplified design of the pay station, here described as a UML class diagram:

«interface»
PayStation

«interface»
Receipt

issuer

*
1

PayStationHardware

PayStationImpl

1

You are now faced with a new customer requirement: In the four southern pay stations on our park-
ing lot, the pay stations should not accept payment from 19:00 evening until 7:00 morning. Rephrasing
this, the addPayment method of interface PayStation (FRS p. 46) of these pay stations should
throw an IllegalConException no matter what coinValue is entered.

You are asked to identify a design pattern that will solve this requirement such that a flexible,
reliable, and maintainable design emerge.

– Describe the design using UML and Java and emphasize the design pattern identified.
– Discuss alternatives to the proposed design, and argue for benefits and liabilities.
– Discuss the design pattern concept from a theoretical point of view, including the various

definitions.
– Relate to other topics.

11

0.11 Design patterns

Alphatown approaches us with a new requirement. They want to monitor the pay stations on
a given parking lot for two purposes: A) they want a digital sign at the entrance stating the
number of vacant slots for cars at the parking lot, and B) they want to monitor the total earning
of the parking lot. Below is shown an early prototype of such a system where four pay stations
are monitored by two “monitor” applications.

We realize that a monitor application can calculate the two properties (vacant slots and earning)
if they are informed of “number of minutes bought” and “amount of cents entered” in every
buy transaction from every pay station in the parking lot.

You are asked to identify a design pattern that will solve this requirement such that a flexible,
reliable, and maintainable design emerge.

– Describe the design using UML and Java and emphasize the design pattern identified.
– Discuss alternatives to the proposed design, and argue for benefits and liabilities.
– Discuss the design pattern concept from a theoretical point of view, including the various

definitions.
– Relate to other topics.

(You should focus on the exchange of information between pay stations and monitor applica-
tions, not on the algorithm to calculate number of vacant slot.)

12

0.12 Design Patterns

The startup company BigCloud provides a cloud based SQL database service free of charge. De-
velopers can utilize a database using the BigBase Java interface that has methods for updating
tables as well as make queries using standard SQL statements:� �

1 import j ava . s q l . * ;
2
3 public i n t e r f a c e BigBase {
4 / / up da t e t a b l e s (CREATE and UPDATE s t a t e m e n t s)
5 public void executeUpdate (S t r i n g sqlUpdate) throws SQLException ;
6 / / query (SELECT FROM WHERE s t a t e m e n t)
7 public R e s u l t S e t executeQuery (S t r i n g sqlQuery) throws SQLException ;
8 }� �

You shall assume that the actual execution of SQL on the BigBase server is handled by a
class implementing the BigBase interface. A tentative implementation on the server side is
shown below, where Request objects are received on the server for every internet call from a
client. The server logs the client in, using his/her req.username, and stores/uses the reference
to invoke methods on his/her BigBase implementation:� �

1 private Map<Str ing , BigBase> databaseMap ; / / Map username t o d a t a b a s e r e f e r e n c e
2 public void handleRemoteClientLogin (LoginRequest req) {
3 / / [l o g t h e u s e r wi th username ’ r e q . username ’ in]
4 BigBase database = new BigBaseImpl () ;
5 databaseMap . put (req . username , database) ;
6 }
7 public void handleRemoteClientRequest (Request req) throws SQLException {
8 BigBase database = databaseMap . get (req . username) ; / / g e t d a t a b a s e f o r u s e r
9 i f (req . type == Request .UPDATE) {

10 database . executeUpdate (req . statement) ;
11 } e lse i f (req . type == Request .QUERY) {
12 R e s u l t S e t r s = database . executeQuery (req . statement) ;
13 }
14 / / [s end t h e answer b a c k t o c l i e n t]
15 }� �

Now, one year after launch, BigCloud is highly successfull and wants to start generating profits
from its success. Therefore it is decided on a pay-per-use model such that the first 1000 updates
per month are free while all subsequent updates cost 1 cent pr call to the executeUpdate
method. It is considered highly likely that the limit of free updates and the cost of each update
will change in the future.

It has also been decided that statistics data on all queries should be collected, i.e., all execute-
Query method calls for all users should be counted on the servers.

You are asked to identify design pattern(s) that will allow BigCloud to implement this be-
haviour.

– Identify suitable design pattern(s) to implement a flexible way to fulfil the requirements.
– Sketch Java code and UML diagrams for the solution.
– Discuss design patterns from a theoretical viewpoint.
– Relate to other topics.

Hint: The set of patterns to consider are ADAPTER, COMMAND, DECORATOR, and PROXY.

13

0.13 Compositional Design

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked to analyze the above design from a compositional design perspective:

– Describe the ③-①-②process and underlying principles, and apply it on the above system.
– Sketch UML and Java code for a refactored system.
– Relate the refactored design to multi-dimensional variance, and discuss benefits and lia-

bilities of the original and refactored design.
– Relate to the concepts of behaviour, responsibility, roles, and protocol.
– Relate to other topics.

14

0.14 Frameworks

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked to use framework terminology, techniques, and tools to:

– Describe how the design could be refactored to become a framework.
– Sketch cental aspects in the refactored design using UML and Java.
– Discuss concepts introduced from a theoretical viewpoint.
– Relate to other topics.

15

0.15 Frameworks

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked to use framework terminology, techniques, and tools to:

– Sketch a refactored design using composition instead using UML and Java.
– Discuss the original and your refactored design using the concepts of separation and

unification of the TEMPLATE METHOD pattern.
– Discuss concepts introduced from a theoretical viewpoint.
– Relate to other topics.

16

0.16 Clean Code and Refactoring

A HotStone Game implementation uses an array to implement the battlefield of the two play-
ers, index 0 is Findus, while index 1 is Peddersen:� �

1 private ArrayList<Card>[] f i e l d ;� �
Consider the following (partial) method implementation of our HotStone’s attackCard():� �

1 @Override
2 public S t a t u s attackCard (Player playerAttacking ,
3 Card attackingCard , Card defendingCard) {
4 S t a t u s s t a t u s = null ;
5 i f (p layerAttacking == Player . FINDUS)
6 s t a t u s = attackCardByFindus (attackingCard , defendingCard) ;
7 e lse
8 s t a t u s = peddersensAttackCard (defendingCard , at tackingCard) ;
9

10 return s t a t u s ;
11 }
12
13 private S t a t u s peddersensAttackCard (Card defendingCard , Card attackingCard) {
14 S t a t u s s t a t u s ;
15 i f (at tackingCard . getOwner () != Player .PEDDERSEN) {
16 s t a t u s = S t a t u s .NOT OWNER;
17 } e lse {
18 i f (defendingCard . getOwner () == Player .PEDDERSEN) {
19 s t a t u s = S t a t u s .ATTACK NOT ALLOWED ON OWN MINION;
20 } e lse {
21 i f (Player .PEDDERSEN != playerInTurn) {
22 s t a t u s = S t a t u s . NOT PLAYER IN TURN ;
23 } e lse {
24 i f (! at tackingCard . i s A c t i v e ()) {
25 s t a t u s = S t a t u s .ATTACK NOT ALLOWED FOR NON ACTIVE MINION;
26 } e lse {
27 StandardCard atC = (StandardCard) attackingCard ;
28 StandardCard defender = (StandardCard) defendingCard ;
29 / / F indus a t t a c k s t h e c a r d
30 atC . lowerHealthBy (defender . getAttack ()) ;
31 defender . lowerHealthBy (atC . getAttack ()) ;
32
33 / / remove d e f e a t e d minions
34 i f (atC . getHealth () <= 0)
35 f i e l d [1] . remove (atC) ;
36 i f (defender . getHealth () <= 0)
37 f i e l d [0] . remove (defender) ;
38
39 / / t o g g l e t h e a c t i v e f l a g o f a t t a c k e r
40 atC . s e t A c t i v e (f a l s e) ;
41
42 s t a t u s = S t a t u s .OK;
43 }
44 }
45 }
46 }
47 return s t a t u s ;
48 }
49 [S i m i l a r code for ’ attackCardByFindus ’]� �

You are asked to use terminology and techniques from Clean Code [Martin, 2009] to:

– Identify the Clean Code properties that are not obeyed in the code fragment.
– Sketch a refactoring of the code fragment to clean (important parts of) it.
– Discuss the ISO 9126 Maintainability quality and its sub-qualities and discuss it with

respect to the code.
– Relate to other topics.

17

0.17 Distribution and Broker

A smartphone app “SnappyTalk” allows users to take a picture, and share it with friends on a
set of user defined friend-lists, named like “family”, “school”, or “grandparents”. For example,
I can take a picture and ask SnappyTalk to send it to all users listed in the “family” list. In this
exercise the focus will be on handling the friend-lists.

A test case for creating a friend-list, adding some friends, and reviewing it is:� �
1 @Test
2 public void shouldHandleFriendList () {
3 / / Given a l i s t o f s c h o o l f r i e n d s
4 F r i e n d L i s t s c h o o l L i s t = snappy . c r e a t e F r i e n d L i s t (” school ”) ;
5 s c h o o l L i s t . addFriend (” Bjarne ”) ;
6 s c h o o l L i s t . addFriend (” Carla ”) ;
7
8 / / When I t r y t o r e t r i e v e a l i s t a g a i n
9 F r i e n d L i s t t h e L i s t = snappy . g e t F r i e n d L i s t (” school ”) ;

10 / / Then c o n t e n t s i s c o r r e c t
11 a s s e r t T h a t (t h e L i s t . s i z e () , i s (2)) ;
12 a s s e r t T h a t (t h e L i s t . get (0) , i s (” B jarne ”)) ;
13 a s s e r t T h a t (t h e L i s t . get (1) , i s (” Carla ”)) ;
14 }� �

Given the interfaces:� �
1 public i n t e r f a c e SnappyTalk {
2 / / C r e a t e and r e t u r n a new F r i e n d L i s t wi th t h e g i v e n name
3 F r i e n d L i s t c r e a t e F r i e n d L i s t (S t r i n g listName) ;
4 / / Return F r i e n d L i s t f o r t h e g i v e n name
5 F r i e n d L i s t g e t F r i e n d L i s t (S t r i n g listName) ;
6 }
7 public i n t e r f a c e F r i e n d L i s t {
8 / / Add a f r i e n d t o my f r i e n d l i s t , wi th t h e g i v e n name
9 void addFriend (S t r i n g friendName) ;

10 / / Get name o f f r i e n d a t t h e g i v e n i n d e x
11 S t r i n g get (i n t index) ;
12 / / Return s i z e o f t h e f r i e n d l i s t
13 i n t s i z e () ;
14 }� �

In this exercise, you should focus on the SnappyTalk.createFriendList() method. Be aware that the
FriendList role must be a remote object.

You are asked to use terminology and techniques from the BROKER pattern to:

– Outline the BROKER pattern’s structure, roles, and responsibilities.
– Sketch Java code for the central broker roles (proxies, invoker) that need to be imple-

mented for this exercise.
– Relate to other topics, notably compositional design.

18

0.18 Distribution and Broker

A SWEA student group has started a company that develops on-line two player card games
for mobile phones, inspired by their work on the SWEA mandatory HotStone project.

In the games, a player’s cards can attack an opponent’s card, thereby reducing its “life” and
ultimately destroy it, once its “life” count reaches zero, similar to HotStone. One of the card
games has a magic theme, in which players can transform (“use magic on”) a card in his/her
hand or on the field, making it into a more powerful card. A typical transformation of a card
will double its attack strength, double its life points, make it into a completely different card,
etc. A typical, client-side, invocation would look like� �

1 Card oldCard = [. . .]
2 Card newCard = game . transform (oldCard , CONVERT TO DRAGON CARD) ;� �

using interfaces for the card game domain roles as outlined here:� �
1 public i n t e r f a c e Game {
2 / / Trans form g i v e n c a r d i n t o a NEW card , us ing t h e
3 / / t r a n s f o r m a t i o n ’ t ’
4 public Card transform (Card card , Transformation t) ;
5 [. . .]
6 }
7 public i n t e r f a c e Card {
8 / / Get t h e unique (r e mo t e) o b j e c t I d
9 public S t r i n g get Id () ;

10 public i n t getAt tackPoints () ;
11 public i n t g e t L i f e P o i n t s L e f t () ;
12 }
13 public enum Transformation {
14 CONVERT TO DRAGON CARD,
15 DOUBLE THE ATTACK,
16 DOUBLE THE LIFE ,
17 [. . .]
18 }� �

In this exercise, you should focus on implementing the Card transform(...) method, that is, the
client proxy code and the invoker code for this method.

Functionally, the server-side GameServant object implements card transformations by first
deleting the transformed card from the game, and then create a new card with the new charac-
teristics (become a ’dragon card’, double the life points, etc.), and return that using our Broker’s
pass-by-reference technique.

You are asked to use terminology and techniques from the BROKER pattern to:

– Outline the BROKER pattern’s structure, roles, and responsibilities.
– Sketch Java code for the central broker roles (proxies, invoker) that need to be imple-

mented for this exercise.
– Sketch Java code for how server created objects are made available for interaction by

clients.
– Relate to other topics, notably compositional design.

19

