
SWEA Iteration 6: Compositional Design
Principles

<<Group name>>
Computer Science, University of Aarhus

8200 Århus N, Denmark
<<Names>>

<<Date>>

1 Private Interfaces and ISP

1.1 Private Interface Design

[Describe your improved design using private interfaces for internal abstrac-
tions like Game, Card, or Hero]

1.2 Refactoring

[Show code before the refactoring; and next the refactored code based upon
role interfaces.]

2 AbstractFactory

2.1 Design and UML

[Include a UML diagram that shows the design of HotStone with emphasis on
the use of Abstract Factory. Please, do not draw all the association lines to all
concrete Products/delegates as this will make the diagram a complete mess.
(A good quality picture of a hand-drawn UML diagram is OK.) ]

2.2 Configuring ZetaStone

[Write the full path of the the ConcreteFactory that configures HotStone for the
ZetaStone.]

[Include screenshot/contents of the ConcreteFactory that configures Hot-
Stone for the ZetaStone variant.]

1



3 SemiStone

3.1 Configuration Table

[Fill in Table 1., similar to the table from FRS §17.2]

Table 1: HotStone configurations

Variability points
Product Mana Prod. Winning . . .
AlphaStone 3 every round Findus/round 4 -
BetaStone +1 pr round Defeat opponent -
GammaStone - - -
. . . - -
SemiStone - - -

3.2 SemiStone Code Configuration

The SemiStone variant is configured in our code like this . . .

[Provide production code fragment(s) that show the code that configure the
GameImpl for the SemiStone variant]

The design of the HotStone system, with emphasis on the SemiStone vari-
ant, is shown by the following UML diagram:

[Include the UML diagram of all interfaces and classes in HotStone related
to variant handling—but show only the associations between the SemiStone
abstract factory implementation to its products, not all the other associations
between concrete factory classes.]

4 Parametric ’getWinner()’

The method getWinner() in GameImpl would look like this if a purely paramet-
ric design had been employed as variant handling technique in the HotStone
code:

[Provide (pseudo) code fragment(s) the show how a parametric design could
be implemented]

5 Polymorphic ZetaStone

The ZetaStone design would look like this if a purely polymorphic design had
been employed as variant handling technique:

[UML diagram of the interfaces and classes involved in a purely polymor-
phic design of ZetaStone]

2



The actual getWinner() method in the ZetaStone subclass would look some-
thing like this

[(Pseudo-)Code fragment outlining the getWinner() method]

6 Backlog

• . . .

• . . .

3


