SWEA Iteration 5: Test Doubles and More
Patterns

<<Group name>>
Computer Science, University of Aarhus
8200 Arhus N, Denmark
<<Names>>

<<Date>>

1 EpsilonStone

1.1 Design and UML

[Short argumentation for your EpsilonStone design: Refer to the UML dia-
gram, and emphasize how indirect input are encapsulated; which delegates
are the Test Doubles and the real production implementation.]

[INCLUDE UML DIAGRAM HERE - A GOOD PICTURE OF HANDRAWN
IS OK ]

1.2 JUnit test cases

[Write the full path of the JUnit test file, that configure Game with your test
doubles(s), and tests the EpsilonStone behaviour.]
[Include screenshot/contents of the JUnit tests.]

2 ZetaStone
2.1 Design and UML

[Write a short argumentation for which roles (game/winner strategy/??) stores
which state (hero health/attack output) and how this state is passed/access so
your ZetaStone winner strategy can correctly determine the winner; and the
collaborating roles have high cohesion.]

[Include a UML diagram that shows the design of the ZetaStone part of
HotStone, with emphasis on the State pattern introduced and the existing win-
ner strategies that are reused. (A good quality picture of a hand-drawn UML
diagram is OK.) |



2.2 Unit/Integration Testing

[Include short argumentation for your decision to either TDD using unit test-
ing the strategy using a Game test double; or by integration testing with your
standard game implementation.]

2.3 State Selection Code

[Write the full path of the implementation file of your State pattern for ZetaS-
tone.]

[Write a short argumentation for how state selection is made, refering to the
code below.]

[A screenshot of the (JaCoCo-painted!) state selection code in the Context
implementation of the State pattern, showing that correct behaviour of ZetaS-
tone has been tested. |

3 EtaStone
3.1 Design and UML

[Short argumentation for your EtaStone design with reference to the UML dia-
gram.]

[INCLUDE UML DIAGRAM HERE - A GOOD PICTURE OF HANDRAWN
IS OK ]

4 Backlog

The following features and requirements are still not implemented in our Hot-
Stone software:

Tt would be fine if you present JaCoCo or Intelli] Code Coverage painted code to show your
tests cover both states.



