Computational Complexity Theory, Fall 2010
 October 6

 Lecture 13: Basic circuit constructions

 Lecturer: Kristoffer Arnsfelt Hansen

 Scribe: Mikael Harkjær Møller

1 Problem definitions

Initially we will define some problems for later usages.

Problem 1 (ADDITION). Given *n*-bit numbers x and y compute z = x + y.

Problem 2 (MULT). Given *n*-bit numbers x and y compute $z = x \cdot y$.

Problem 3 (ITADD). Given *n*,*n*-bit numbers a^1, a^2, \ldots, a^n , compute $z = a^1 + a^2 + \ldots + a^n$.

Problem 4 (BCOUNT). Given n bits a_1, a_2, \ldots, a_n , compute $z = a_1 + a_2 \ldots + a_n$.

2 Basic circuit constructions

Lets recall our non-uniform hierarchy of circuit classes.

Definition 5 (Circuit classes). The Non-uniform hierarchy of circuit classes we study is as follows,

$$AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq NC^2 \dots \subseteq NC \subseteq P/poly$$
.

We can also define uniform log circuit classes, i.e. log-space versions of AC^i and NC^i ;

$$U_L$$
- AC^i and U_L - NC^i .

The goal of this lecture is to classify the problems defined above and to also prove the following hierarchy;

$$U_L$$
- $AC^0 \subseteq U_L$ - $NC^1 \subseteq L \subseteq NL \subseteq U_L$ - $AC^1 \subseteq U_L$ - $NC^2 \dots \subseteq U_L$ - $NC \subseteq P$,

more precisely we will prove that U_L -NC¹ \subseteq L and that NL \subseteq U_L-AC¹.

Theorem 6. ADDITION $\in AC^0$.

Proof. Let

$$x = x_{n-1}x_{n-2}\dots x_0$$
 and $y = y_{n-1}y_{n-2}\dots y_0$.

Define the following $g_i = x_i \wedge y_i$ (generate carry), $p_i = x_i \vee y_i$ (propagate carry), $c_i = \bigvee_{j=0}^{i-1} \left(g_j \bigwedge_{k=j+1}^{i-1} (p_k) \right)$ and $c_0 = 0$. Thus it follows that

$$z_i = x_i \oplus y_i \oplus c_i \quad \text{for } 0 \le i \le n,$$

and $z_n = c_n$. Note that the XOR \oplus can easily be replaced by 2 fan in AND, OR and NOT gates.

Theorem 7. U_L -NC¹ $\subseteq L$.

Proof. Let M be a machine that on given input x, evaluates the circuit for the input of length n = |x| on x, generating the circuit on the fly, recursively.

We need to store O(1) bits per level. Since depth of circuit is $O(\log(n))$, the total space is $O(\log(n))$.

Before we go on to prove the next theorem, lest recall multiplication of Boolean matrices. Let B, C be two boolean $n \times n$, then the product BC is defined by

$$[BC]_{i,j} = \bigvee_{k=1}^{n} \left(B_{i,k} \wedge C_{k,j} \right).$$

We will also need to define the transitive closure of a boolean matrix B. Denoted B^* and defined as

$$B^* = \bigvee_{j \ge 0} B^j.$$

Observe that if B is a $n \times n$ matrix then it holds that

 $B^* = (A \vee I)^{n-1}$, where I is the identity matrix.

Theorem 8. $NL \subseteq U_L$ - AC^1 .

The proof of this theorem is similar to the one for Savitch theorem, but we present a bottom up algorithm.

Proof. We construct circuits for STCON. Given a graph G, states s, t is there a path from s to t. Let D be the $n \times n$ boolean adjacency matrix of G. Note that D^* is then the adjacency if paths in G, i.e. STCON is true if $[D^*]_{s,t} = 1$.

We will compute $(D \vee I)^{n-1}$ by iterated squaring. We can compute $(D \vee I)^{n-1}$ by $O(\log n)$ matrix multiplications. Each matrix multiplication is done in depth 2 (with unbounded fan in). Then STCON must be in U_L-AC¹.

Now lets define some more Boolean functions;

Definition 9 (Majority).

$$MAJ(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=0}^n x_i \ge \frac{n}{2}, \\ 0 & \text{oterwise.} \end{cases}$$

Definition 10 (Threshold).

$$T_k(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=0}^n x_i \ge k, \\ 0 & \text{oterwise.} \end{cases}$$

We can now define a now circuit class

Definition 11 ("TC-zero"). TC⁰ is the class of languages computed by O(1) depth $n^{O(1)}$ size circuits using only MAJ function as gates.

NOTE: TC^0 is a possible theoretical model of Neural Networks.

Lemma 12.

$$T_k(x_1, \dots, x_n) = \operatorname{MAJ}(x_1, \dots, x_n, \overbrace{1, 1, \dots, 1}^{n-2k}) \quad \text{for } k \le \frac{n}{2}$$

Lemma 13.

$$T_k(x_1,\ldots,x_n) = \operatorname{MAJ}(x_1,\ldots,x_n,\overbrace{0,0,\ldots,0}^{2k-n}) \quad for \ k > \frac{n}{2}$$

Theorem 14. ITADD $\in NC^1$

Proof. We will proof this using the " $3 \rightarrow 2$ " addition trick. Let a, b, c be n-bit numbers

$$a = a_{n_1} \cdots a_1 a_0$$

$$b = b_{n_1} \cdots b_1 b_0$$

$$a = c_{n_1} \cdots c_1 c_0.$$

Now lets define

$$d = d_n \ d_{n_1} \cdots \ d_1 \ 0$$
$$e = 0 \quad e_{n_1} \cdots \ e_1 \ e_0$$

where $d_i = T_2(a_{i-1}, b_{i-1}, c_{i-1})$ and $e_i = a_i \oplus b_i \oplus c_i$. We can compute these using famin 2 and constant depth.

By this, using O(1) levels of fan in 2 gates we can reduce adding n - n-bits numbers to adding $\frac{2}{3} \cdot n - (n+1)$ bit numbers. We can do this $O(\log n)$ times to get 2 numbers with $n + O(\log n)$ bits. All this we can do in depth $O(\log n)$.

We can now add these two numbers, this is also possible to do in depth $O(\log n)$ (Here we use the AC⁰ circuit we constructed and convert it to a $O(\log n)$ fanin 2 circuit). Thus it follows that ITADD \in NC¹.

From this theorem we also immediately get the following corollary.

Corollary 15. $TC^0 \subseteq NC^1$

Now lets define a new kind of reduction.

Definition 16 (Constant depth reduction). We say that constant depth reducible denoted $A \leq_{cd} B$ if A can be computed in constant depth and $n^{O(1)}$ size using unbounded fanin AND, OR and oracle gates for B.

Theorem 17. MULT \leq_{cd} ITADD.

Proof. We need to compute the following

 $(x_{n-1} x_{n-2} \cdots x_0) \cdot (y_{n-1} y_{n-2} \cdots y_0).$

We do this by adding the numbers $y \cdot 2^i$ for all *i* where $x_i = 1$.

Thus we get less than n numbers with less than 2n bits we need to add.

Theorem 18. ITADD $\leq_{cd} BCOUNT$

Proof. We want to add a^1, \ldots, a^n which are all *n*-bit numbers.

Compute the column sums $s^i = \sum_{j=1}^n a_i^j$. Now consider the $\lg(n)$ diagonals as $n + \lg(n)$ bit numbers. (column sum *i* is shifted by *i* positions). Now it holds that $\sum_{i=0}^{n-1} a^i$ =sum of the diagonals.

Thus we have that adding n - n-bit numbers is reducible to adding $\lg(n) - n + \lg(n)$ -bit numbers. Repeating this we can again reduce this to adding $\lg\lg((n)) - n + \lg(n) + \lg(\lg(n))$ -bit numbers. These reductions can be done in constant depth using BCOUNT.

If we continue by repeating this <u>mentally</u> until $\lg^k(n) \leq 2$, then we have reduced the problem to adding ≤ 2 numbers each of $n + \lg(n) + \cdots + \lg^{(n)}(n)$ bits, and each of the bits in these last ≤ 2 numbers depends on at most $\lg^{(2)}(n) \cdot \lg^{(3)}(n) \cdots \lg^{(n)}(n)$ bits of the previous $\lg(\lg(n))$ -bit numbers. We claim that all these reductions can be done all at once in constant depth and polynomial size.

Notice that

$$\lg^{(2)}(n) \cdot \lg^{(3)}(n) \cdots \lg^{(n)}(n) = O(\log(\log(n))^{\lg^*(n)}) = O(\log(n))$$

That is *each* output bit depends on only $O(\log n)$ previously computed bits. Thus we can do this computation by $2^{O(\log(n))} = n^{O(1)}$ size circuits. That is, exponential size circuits on $O(\log n)$ inputs are of polynomial size in n.

Theorem 19. BCOUNT $\in TC^0$

Proof. Given n bits a_1, a_2, \ldots, a_n . Define

$$R_i = \{j || i'$$
th bit of jin binary is1 $\}$

Then

$$s_i = \bigvee_{j \in R_i} (\mathbf{T}_j(a_1, \dots, a_n) \land /\mathbf{T}_j + 1(a_1, \dots, a_n))$$