
Computational Complexity Theory, Fall 2010 October 6

Lecture 13: Basic circuit constructions

Lecturer: Kristoffer Arnsfelt Hansen Scribe: Mikael Harkjær Møller

1 Problem definitions

Initially we will define some problems for later usages.

Problem 1 (ADDITION). Given n-bit numbers x and y compute z = x + y.

Problem 2 (MULT). Given n-bit numbers x and y compute z = x · y.

Problem 3 (ITADD). Given n,n-bit numbers a1, a2, . . . , an, compute z = a1 + a2 + . . . + an.

Problem 4 (BCOUNT). Given n bits a1, a2, . . . , an, compute z = a1 + a2 . . . + an.

2 Basic circuit constructions

Lets recall our non-uniform hierarchy of circuit classes.

Definition 5 (Circuit classes). The Non-uniform hierarchy of circuit classes we study is as follows,

AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 . . . ⊆ NC ⊆ P/poly .

We can also define uniform log circuit classes, i.e. log-space versions of ACi and NCi;

UL-ACi and UL-NCi .

The goal of this lecture is to classify the problems defined above and to also prove the following
hierarchy;

UL-AC0 ⊆ UL-NC1 ⊆ L ⊆ NL ⊆ UL-AC1 ⊆ UL-NC2 . . . ⊆ UL-NC ⊆ P,

more precisely we will prove that UL-NC1 ⊆ L and that NL ⊆ UL-AC1.

Theorem 6. ADDITION ∈ AC0.

Proof. Let
x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0.

1

Define the following
gi = xi ∧ yi (generate carry),
pi = xi ∨ yi (propagate carry),

ci =

i−1∨
j=0

gj

i−1∧
k=j+1

(pk)

 and c0 = 0.

Thus it follows that
zi = xi ⊕ yi ⊕ ci for 0 ≤ i ≤ n,

and zn = cn. Note that the XOR ⊕ can easily be replaced by 2 fan in AND, OR and NOT gates.

Theorem 7. UL-NC1 ⊆ L.

Proof. Let M be a machine that on given input x, evaluates the circuit for the input of length
n = |x| on x, generating the circuit on the fly, recursively.

We need to store O(1) bits per level. Since depth of circuit is O(log(n), the total space is
O(log(n).

Before we go on to prove the next theorem, lest recall multiplication of Boolean matrices. Let
B,C be two boolean n× n, then the product BC is defined by

[BC]i,j =
n∨

k=1

(Bi,k ∧ Ck,j) .

2

We will also need to define the transitive closure of a boolean matrix B. Denoted B∗ and defined
as

B∗ =
∨
j≥0

Bj .

Observe that if B is a n× n matrix then it holds that

B∗ = (A ∨ I)n−1, ,where I is the identity matrix.

Theorem 8. NL ⊆ UL-AC1.

The proof of this theorem is similar to the one for Savitch theorem, but we present a bottom
up algorithm.

Proof. We construct circuits for STCON. Given a graph G, states s, t is there a path from s to t.
Let D be the n× n boolean adjacency matrix of G. Note that D∗ is then the adjacency if paths in
G, i.e. STCON is true if [D∗]s,t = 1.

We will compute (D ∨ I)n−1 by iterated squaring. We can compute (D ∨ I)n−1 by O(log n)
matrix multiplications. Each matrix multiplication is done in depth 2 (with unbounded fan in).
Then STCON must be in UL-AC1.

Now lets define some more Boolean functions;

Definition 9 (Majority).

MAJ(x1, . . . , xn) =

{
1 if

∑n
i=0 xi ≥

n
2 ,

0 oterwise.

Definition 10 (Threshold).

Tk(x1, . . . , xn) =

{
1 if

∑n
i=0 xi ≥ k,

0 oterwise.

We can now define a now circuit class

Definition 11 (“TC-zero”). TC0 is the class of languages computed by O(1) depth nO(1) size
circuits using only MAJ function as gates.

NOTE: TC0 is a possible theoretical model of Neural Networks.

Lemma 12.

Tk(x1, . . . , xn) = MAJ(x1, . . . , xn,

n−2k︷ ︸︸ ︷
1, 1, . . . , 1) for k ≤ n

2
.

Lemma 13.

Tk(x1, . . . , xn) = MAJ(x1, . . . , xn,

2k−n︷ ︸︸ ︷
0, 0, . . . , 0) for k >

n

2
.

Theorem 14. ITADD ∈ NC1

3

Proof. We will proof this using the “3→ 2” addition trick. Let a, b, c be n-bit numbers

a = an1 · · · a1 a0
b = bn1 · · · b1 b0
a = cn1 · · · c1 c0.

Now lets define

d = dn dn1 · · · d1 0

e = 0 en1 · · · e1 e0,

where di = T2(ai−1, bi−1, ci−1) and ei = ai ⊕ bi ⊕ ci. We can compute these using fanin 2 and
constant depth.

By this, using O(1) levels of fan in 2 gates we can reduce adding n - n-bits numbers to adding
2
3 ·n - (n+ 1) bit numbers. We can do this O(log n) times to get 2 numbers with n+O(log n) bits.
All this we can do in depth O(log n).

We can now add these two numbers, this is also possible to do in depth O(log n) (Here we use
the AC0 circuit we constructed and convert it to a O(log n) fanin 2 circuit). Thus it follows that
ITADD ∈ NC1.

From this theorem we also immediately get the following corollary.

Corollary 15. TC0 ⊆ NC1

Now lets define a new kind of reduction.

4

Definition 16 (Constant depth reduction). We say that constant depth reducible denoted A≤cdB
if A can be computed in constant depth and nO(1) size using unbounded fanin AND, OR and oracle
gates for B.

Theorem 17. MULT≤cd ITADD.

Proof. We need to compute the following

(xn−1 xn−2 · · · x0) · (yn−1 yn−2 · · · y0).

We do this by adding the numbers y · 2i for all i where xi = 1.
Thus we get less than n numbers with less than 2n bits we need to add.

Theorem 18. ITADD≤cd BCOUNT

Proof. We want to add a1, . . . , an which are all n-bit numbers.

Compute the column sums si =
∑n

j=1 a
j
i . Now consider the lg(n) diagonals as n + lg(n) bit

numbers. (column sum i is shifted by i positions). Now it holds that
∑n−1

i=0 ai =sum of the
diagonals.

5

Thus we have that adding n - n-bit numbers is reducible to adding lg(n) - n+lg(n)-bit numbers.
Repeating this we can again reduce this to adding lg lg((n)) - n + lg(n) + lg(lg(n))-bit numbers.
These reductions can be done in constant depth using BCOUNT.

If we continue by repeating this mentally until lgk(n) ≤ 2, then we have reduced the problem

to adding ≤ 2 numbers each of n+ lg(n) + · · ·+ lg(n)(n) bits, and each of the bits in these last ≤ 2
numbers depends on at most lg(2)(n) · lg(3)(n) · · · lg(n)(n) bits of the previous lg(lg(n))-bit numbers.
We claim that all these reductions can be done all at once in constant depth and polynomial size.

Notice that

lg(2)(n) · lg(3)(n) · · · lg(n)(n) = O(log(log(n))lg
∗(n)) = O(log(n)).

That is each output bit depends on only O(log n) previously computed bits. Thus we can do this
computation by 2O(log(n) = nO(1) size circuits. That is, exponential size circuits on O(log n) inputs
are of polynomial size in n.

Theorem 19. BCOUNT ∈ TC0

Proof. Given n bits a1, a2, . . . , an. Define

Ri = {j‖i’th bit of jin binary is1}

Then
si =

∨
j∈Ri

(Tj(a1, . . . , an)∧ 6 Tj + 1(a1, . . . , an))

6

	Problem definitions
	Basic circuit constructions

