Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	Formalization

Modalities in HoTT

Egbert Rijke, Mike Shulman, Bas Spitters

1706.07526

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
	0000	00000000	000	000
Outline				

1 Higher toposes

- 2 Internal logic
- 3 Modalities
- **4** Sub- ∞ -toposes

6 Formalization

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
•••••••••				

Two generalizations of Sets

Groupoids:

To keep track of isomorphisms we generalize sets to groupoids (proof relevant equivalence relations) 2-groupoids (add coherence conditions for associativity), \dots weak ∞ -groupoids

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
••••••				

Two generalizations of Sets

Groupoids:

To keep track of isomorphisms we generalize sets to groupoids (proof relevant equivalence relations) 2-groupoids (add coherence conditions for associativity), ... weak ∞-groupoids

Weak ∞ -groupoids are modeled by Kan simplicial sets. (Grothendieck homotopy hypothesis)

Higher toposes	Internal logic	Modalities	Sub- ∞ -toposes	Formalization
0●000000000000	0000	00000000		000

Topos theory

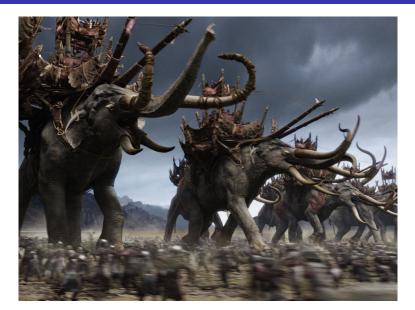
Higher toposes 00●0000000000	Internal logic 0000	Modalities 000000000	$Sub ext{-}\infty ext{-}toposes$	Formalization
Topos theory				

A topos is like:

- a semantics for intuitionistic formal systems model of intuitionistic higher order logic/type theory.
- a category of sheaves on a site (forcing)
- a category with finite limits and power-objects
- a generalized space

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
000000000000000				

Higher topos theory



Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000●000000000	0000	000000000	०००	
Higher topos	theory			

Combine these two generalizations of sets.

A higher topos is (represented by): a model category which is Quillen equivalent to simplicial $Sh(C)_S$ for some model ∞ -site (C, S)Less precisely:

- a generalized space (presented by homotopy types)
- a place for abstract homotopy theory
- a place for abstract algebraic topology
- a semantics for Martin-Löf type theory with univalence (Shulman/Cisinski) and higher inductive types (Shulman/Lumsdaine). (current results are incomplete but promising)

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000●0000000	0000	00000000	000	000
Envisioned app	olications			

Type theory with univalence and higher inductive types as the internal language for higher topos theory?

- higher categorical foundation of mathematics
- framework for large scale formalization of mathematics
- foundation for constructive mathematics e.g. type theory with the fan rule
- expressive programming language with a clear semantics (e.g. cubical)

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
000000000000	0000	00000000	000	

Envisioned applications

Type theory with univalence and higher inductive types as the internal language for higher topos theory?

- higher categorical foundation of mathematics
- framework for large scale formalization of mathematics
- foundation for constructive mathematics e.g. type theory with the fan rule
- expressive programming language with a clear semantics (e.g. cubical)

Towards elementary ∞ -topos theory. Effective ∞ -topos?, glueing (Shulman),... Coq formalization

Type theory with univalence and higher inductive types as the internal language for higher topos theory?

- higher categorical foundation of mathematics
- framework for large scale formalization of mathematics
- foundation for constructive mathematics e.g. type theory with the fan rule
- expressive programming language with a clear semantics (e.g. cubical)

```
Towards elementary \infty-topos theory.
Effective \infty-topos?, glueing (Shulman),...
Coq formalization<sup>1</sup>
```

¹https://github.com/HoTT/HoTT/

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
000000●0000000	0000	00000000	000	
Type theory				

Type theory is another elephant

- a foundation for constructive mathematics an abstract set theory $(\Pi \Sigma)$.
- a calculus for proofs
- an abstract programming language
- a system for developing computer proofs

Higher toposes 0000000●000000	Internal logic 0000	Modalities 00000000	$Sub ext{-}\infty ext{-}toposes$	Formalization

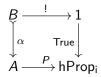
topos axioms

HoTT+UF gives:

- functional extensionality
- propositional extensionality
- quotient types

In fact, hSets forms a predicative topos (Rijke/Spitters) as we also have a large subobject classifier

The subobject classifier lives in a higher universe.



With propositional univalence, hProp classifies monos into A.

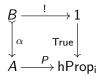
$$A, B : U_i$$
 $hProp_i := \Sigma_{B:U_i} isprop(B)$ $hProp_i : U_{i+1}$

Equivalence between predicates and subsets.

Use universe polymorphism (Coq). Check that there is some way to satisfy the constraints.

This correspondence is the crucial property of a topos.

The subobject classifier lives in a higher universe.



With propositional univalence, hProp classifies monos into A.

$$A, B : U_i$$
 $hProp_i := \Sigma_{B:U_i} isprop(B)$ $hProp_i : U_{i+1}$

Equivalence between predicates and subsets.

Use universe polymorphism (Coq). Check that there is some way to satisfy the constraints.

This correspondence is the crucial property of a topos. Sanity check: epis are surjective (by universe polymorphism).

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000000●0000	0000	00000000	000	000
higher toposes	;			

Definition

- A 1-topos is a 1-category which is
 - Locally presentable
 - 2 Locally cartesian closed
 - 3 Has a subobject classifier (a "universe of truth values")

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000000●0000	0000	000000000	000	000
higher toposes	;			

Definition

- A 1-topos is a 1-category which is
 - 1 Locally presentable
 - 2 Locally cartesian closed
 - 3 Has a subobject classifier (a "universe of truth values")

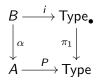
Definition (Rezk,Lurie,...)

A higher topos is an $(\infty, 1)$ -category which is

- 1 Locally presentable (cocomplete and "small-generated")
- 2 Locally cartesian closed (has right adjoints to pullback)
- **3** Has object classifiers ("universes")

Higher toposes 000000000000000	Internal logic 0000	Modalities 000000000	$Sub\text{-}\infty\text{-}toposes$	Formalization
Object classi	fier			

$$Fam(A) := \{(B, \alpha) \mid B : Type, \alpha : B \to A\}$$
 (slice cat)
 $Fam(A) \cong A \to Type$
(Grothendieck construction, using univalence)

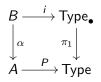


 $\begin{aligned} \mathsf{Type}_{\bullet} &= \{(B, x) \mid B : \mathsf{Type}, x : B\} \\ \mathsf{Classifies all maps into } A + \mathsf{group action of isomorphisms.} \\ \mathsf{Crucial construction in } \infty \text{-toposes.} \end{aligned}$

Grothendieck universes from set theory by universal property

Higher toposes 000000000000000	Internal logic 0000	Modalities 000000000	$Sub\text{-}\infty\text{-}toposes$	Formalization
Object classi	fier			

$$Fam(A) := \{(B, \alpha) \mid B : Type, \alpha : B \to A\}$$
 (slice cat)
 $Fam(A) \cong A \to Type$
(Grothendieck construction, using univalence)



 $\begin{aligned} \mathsf{Type}_{\bullet} &= \{(B, x) \mid B : \mathsf{Type}, x : B\} \\ \mathsf{Classifies all maps into } A + \mathsf{group action of isomorphisms.} \\ \mathsf{Crucial construction in } \infty \text{-toposes.} \end{aligned}$

Grothendieck universes from set theory by universal property Accident: $hProp_{\bullet} \equiv 1$?

Higher toposes 00000000000000000000000000000000000	Internal logic 0000	Modalities 00000000	Sub- ∞ -toposes	Formalization
Object classi	fior			

Theorem (Rijke/Spitters)

In type theory, assuming pushouts, TFAE

- 1 Univalence
- **2** Object classifier
- **3** Descent: Homotopy colimits (over graphs) defined by higher inductive types behave well.

In category theory, 2, 3 are equivalent characterizing properties of a higher topos (Rezk/Lurie). Shows that univalence is natural.

Higher toposes	Internal logic	Modalities	Sub- ∞ -toposes	Formalization
000000000000000	0000	00000000		000
_				

Examples of toposes I

Example

The $(\infty, 1)$ -category of ∞ -groupoids is an ∞ -topos. The object classifier \mathscr{U} is the ∞ -groupoid of (small) ∞ -groupoids.

Higher toposes	Internal logic	Modalities	Sub- ∞ -toposes	Formalization
00000000000000000	0000	00000000		000

Examples of toposes I

Example

The $(\infty, 1)$ -category of ∞ -groupoids is an ∞ -topos. The object classifier \mathscr{U} is the ∞ -groupoid of (small) ∞ -groupoids.

Example

 \mathcal{C} a small $(\infty, 1)$ -category; the $(\infty, 1)$ -category of presheaves of ∞ -groupoids on \mathcal{C} is an ∞ -topos.

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
000000000000000	0000	00000000	000	000

Examples of toposes I

Example

The $(\infty, 1)$ -category of ∞ -groupoids is an ∞ -topos. The object classifier \mathscr{U} is the ∞ -groupoid of (small) ∞ -groupoids.

Example

 ${\mathcal C}$ a small $(\infty,1)\text{-}category;$ the $(\infty,1)\text{-}category$ of presheaves of $\infty\text{-}groupoids$ on ${\mathcal C}$ is an $\infty\text{-}topos.$

Example

If \mathcal{E} is an ∞ -topos and $\mathcal{F} \subseteq \mathcal{E}$ is reflective with accessible left-exact reflector, then \mathcal{F} is an ∞ -topos: a sub- ∞ -topos of \mathcal{E} .

Every ∞ -topos arises by combining these.

Higher toposes 00000000000000	Internal logic 0000	Modalities 000000000	$Sub\text{-}\infty\text{-}toposes$	Formalization

Examples of toposes II

Example

X a topological space; the $(\infty, 1)$ -category Sh(X) of sheaves of ∞ -groupoids on X is an ∞ -topos.

For nice spaces X, Y,

- Continous maps $X \to Y$ are equivalent to ∞ -topos maps $Sh(X) \to Sh(Y)$.
- Every subspace $Z \subseteq X$ induces a sub- ∞ -topos $Sh(Z) \subseteq Sh(X)$.

Higher toposes 0000000000000	Internal logic	Modalities 00000000	$Sub\text{-}\infty\text{-}toposes$	Formalization
Outline				

1 Higher toposes

- 2 Internal logic
- 3 Modalities

4 Sub- ∞ -toposes

6 Formalization

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	•000			

Topos-general mathematics

Idea

- We can "do mathematics" to apply generally in any ∞ -topos.
- A single theorem yields results about many different models.

Example

The topos-general theory of "abelian groups" yields:

- In ∞ -Gpd, classical abelian groups
- In Sh(X), sheaves of abelian groups
- In ∞ -Gpd/X, local systems on X
- In presheaves on $\mathcal{O}(G)$, equivariant coefficient systems

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	•000			

Topos-general mathematics

Idea

- We can "do mathematics" to apply generally in any ∞ -topos.
- A single theorem yields results about many different models.

Example

The topos-general theory of "spectra" yields:

- In ∞ -Gpd, classical stable homotopy theory
- In Sh(X), sheaves of spectra
- In ∞ -Gpd/X, parametrized stable homotopy theory
- In presheaves on $\mathcal{O}(G)$, equivariant stable homotopy theory^{*}

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	0000			

Topos-general mathematics

Idea

- We can "do mathematics" to apply generally in any ∞ -topos.
- A single theorem yields results about many different models.

Example

The topos-general construction of "Eilenberg-MacLane objects"

```
abelian groups \rightarrow spectra
```

can be done once and applied in all cases.

Eilenberg-MacLane object: For any abelian group G and positive integer n, there is an n-type K(G, n) such that $\pi_n(K(G, n)) = G$, and $\pi_k(K(G, n)) = 0$ for $k \neq n$.

Higher toposes	Internal logic	Modalities	Sub- ∞ -toposes	Formalization
0000000000000	○●○○	00000000		000
Internalization				

Idea

We can "do mathematics" to apply generally in any ∞ -topos.

There are two ways to do this:

- Write mathematics in a "point-free" category-theoretic style, in terms of objects and morphisms.
- ② Give a procedure that "compiles" point-ful mathematics to make sense in any ∞-topos — the internal logic / type theory.

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	0000			

Internalization – first style

Example

A group object in a category is

- an object G,
- a morphism $m: G \times G \rightarrow G$,

• the square
$$\begin{array}{c} G \times G \times G \xrightarrow{m \times 1} G \times G \\ 1 \times m \downarrow & \downarrow m \\ G \times G \xrightarrow{m \to G} \end{array}$$
 commutes.

• more stuff . . .

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	0000			

Internalization – second style

Example

A group is

- A set G,
- For each $x, y \in G$, an element $x \cdot y \in G$
- For each $x, y, z \in G$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- more stuff . . .

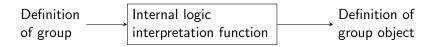
Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	
	0000			

Internalization – second style

Example

A group is

- A set G,
- For each $x, y \in G$, an element $x \cdot y \in G$
- For each $x, y, z \in G$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- more stuff . . .



Higher toposes 00000000000000	Internal logic 0000	Modalities	$Sub\text{-}\infty\text{-}toposes$	Formalization
Outline				

1 Higher toposes

- 2 Internal logic
- **3** Modalities
- **4** Sub- ∞ -toposes

6 Formalization

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	●00000000	०००	
Modalities in	Logic			

In traditional logic:

- A "modality" is a unary operation on propositions like "it is possible that P" (denoted ◊P) or "it is necessary that P" (denoted □P).
- Lawvere-Tierney topologies *j*: '*P* holds locally'.
- *j* is an idempotent monad on the poset of propositions, while
 □ is a comonad.

Our "modalities" \bigcirc are higher modalities, which act on all types, not just subterminals.

Idempotent monads on Type

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	○●○○○○○○○	000	
Modalities				

Two classes of examples of modalities:

- *n*-truncations
- Lawvere-Tierney *j*-operators (closure operators) on hProp.
 - --
 - For u : hProp open modality p → (u ⇒ p) closed modality p → (u ★ p)

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	Formalization
0000000000000	0000	00●000000		000

Reflective subuniverses

Definition (in HoTT)

A reflective subuniverse consists of

- A predicate in $_{\bigcirc}$: $\mathscr{U} \to \Omega$.
- A reflector $\bigcirc : \mathscr{U} \to \mathscr{U}$ with units $\eta_A : A \to \bigcirc A$.
- For all A we have $in_{\bigcirc}(\bigcirc A)$.
- If in_{\bigcirc}(*B*), then $(-\circ \eta_A) : B^{\bigcirc A} \to B^A$ is an equivalence.

Examples: truncated types, $\neg\neg$ -stable types

Higher toposes 0000000000000	Internal logic 0000	Modalities 000●00000	$Sub\text{-}\infty\text{-}toposes$	Formalization
Lex Modalitie	2C			

Definition (in HoTT)

A reflective subuniverse is a lex modality if \bigcirc preserves pullbacks.

Lex=left exact, preserves finite limits

Higher toposes 0000000000000	Internal logic 0000	Modalities 0000●0000	$Sub\text{-}\infty\text{-}toposes$	Formalization
Madalitias				

Theorem (in HoTT)

IVIUUAI

A reflective subuniverse \bigcirc is a modality if: If in_{\bigcirc}(A) and \forall (x : A) in_{\bigcirc}(B(x)), then in_{\bigcirc}($\sum_{x:A}$ B(x)).

It is a lex modality if: If $\bigcirc A = *$ then $\bigcirc (x = y) = *$ for all x, y : A.

Higher toposes 0000000000000	Internal logic 0000	Modalities 0000●0000	Sub- ∞ -toposes	Formalization
Modalitios				

Theorem (in HoTT)

A reflective subuniverse \bigcirc is a modality if: If in_{\bigcirc}(A) and \forall (x : A) in_{\bigcirc}(B(x)), then in_{\bigcirc}($\sum_{x:A}$ B(x)).

It is a lex modality if: If $\bigcirc A = *$ then $\bigcirc (x = y) = *$ for all x, y : A.

The types and type families that are in $_{\odot}$ are called modal.

Example

Every Lawvere-Tierney topology on Prop lifts to a lex modality. The *n*-truncation τ_n , for any n > -2, is a non-lex modality.

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	00000●000	०००	
Factorization	svstems			

In an ∞ -topos, a modality corresponds to a pullback-stable orthogonal factorization system $(\mathcal{L}, \mathcal{R})$:

- $\mathcal{R} =$ the maps $E \rightarrow B$ which are modal in \mathcal{E}/B .
- the factorization = the local reflection $A \rightarrow \bigcirc_B A \rightarrow B$.

Can be internalized in HoTT.

Example

For the *n*-truncation τ_n , we have the (*n*-connected, *n*-truncated) factorization system.

n = -1 epi-mono factorization

Higher toposes 0000000000000	Internal logic 0000	Modalities 000000000	Sub- ∞ -toposes	Formalization

Accessibility in ∞ -toposes

Definition

For a family $\{f_i : S_i \to T_i\}_{i \in I}$ of maps in \mathcal{E} , an object X is externally *f*-local if

$$\mathcal{E}(T_i, X) \xrightarrow{-\circ f_i} \mathcal{E}(S_i, X)$$

is an equivalence for all *i*.

Since \mathcal{E} is locally presentable, if f is small then the externally f-local types are reflective.

Definition

A reflective subcategory is accessible if it consists of the externally f-local types for some (small) family $\{f_i\}$.

Higher toposes 0000000000000	Internal logic 0000	Modalities 0000000●0	Sub- ∞ -toposes	Formalization
Accessibility i				

Definition (in HoTT)

Given type families $S, T : I \to \mathcal{U}$ and a family of maps $f : \prod_{i:I} (S_i \to T_i)$, a type X is internally *f*-local if

$$X^{T_i} \xrightarrow{-\circ f_i} X^{S_i}$$

is an equivalence for all i.

With higher inductive types, the internally f-local types form a reflective subuniverse.

Definition

A reflective subuniverse is accessible if it consists of the internally f-local types for some family f.

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	00000000●	000	

Accessible modalities

Theorem (in HoTT)

An accessible reflective subuniverse is a modality iff it is generated by some $f : \prod_{i:l} (S_i \to *)$ ('nullification').

- Such an f is completely determined by a type family $S: I \to \mathcal{U}$, hence by a map $p: \sum_{i:I} S_i \to I$.
- internally *f*-local \iff externally local for all pullbacks of *p*.

Example

The *n*-truncation τ_n is generated by $S^n \to *$ (with I = *).

Higher toposes	Internal logic	Modalities	$Sub\text{-}\infty\text{-}toposes$	Formalization
00000000000000	0000	00000000		000
Outline				

1 Higher toposes

2 Internal logic

3 Modalities

4 Sub- ∞ -toposes

5 Formalization

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000000000000	0000	00000000	●00	
T I II				

The modal universe

- In HTT, the universe of a sub-∞-topos is constructed by an inexplicit local-presentability argument.
- In HoTT, we can be very explicit about it:

Theorem

For an accessible lex modality, the universe of modal types

$$\mathscr{U}_{\bigcirc} \coloneqq \sum_{X:\mathscr{U}} \mathsf{in}_{\bigcirc}(X)$$

is again modal. Thus, it is an object classifier for the sub- ∞ -topos of modal types.

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000000000000	0000	00000000	●00	
-				

The modal universe

- In HTT, the universe of a sub-∞-topos is constructed by an inexplicit local-presentability argument.
- In HoTT, we can be very explicit about it:

Theorem

For an accessible lex modality, the universe of modal types

$$\mathscr{U}_{\bigcirc} \coloneqq \sum_{X:\mathscr{U}} \mathsf{in}_{\bigcirc}(X)$$

is again modal. Thus, it is an object classifier for the sub- ∞ -topos of modal types.

Conversely

If \bigcirc is a modality and \mathscr{U}_{\bigcirc} is modal, then \bigcirc is lex.

"A quasitopos with a (sub)object classifier is a topos."

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	000000000	○●○	
Topological lo	ocalizations			

- In HTT, a topological localization is a left exact localization generated by monomorphisms.
- For internal localizations in HoTT:

Theorem (in HoTT)

If $S:I\to \Omega$ is a family of truth values, then its localization modality is lex.

Example

Hypercompletion is lex, but not topological.

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	00000000	००●	

The propositional fracture theorem, a.k.a. Artin gluing

The propositional fracture theorem, a.k.a. Artin gluing

Gluing allows us to 'reconstruct' the topos from the open and the closed modalities.

Example: Freyd cover

Scones, Logical Relations, and Parametricity

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
00000000000000	0000	00000000	000	
Outline				

1 Higher toposes

- 2 Internal logic
- 3 Modalities
- **4** Sub- ∞ -toposes

Higher toposes	Internal logic	Modalities	$Sub ext{-}\infty ext{-}toposes$	Formalization
0000000000000	0000	00000000		●00
Formalization				

All of this theory has been formalized (by Shulman) in the HoTT-library for Coq. HoTT-library Bauer, Gross, Lumsdaine, Shulman, Sozeau, Spitters

Interesting use of module system:

A modality is an operator \bigcirc which acts on types and satisfies a universal property that quantifies over all types. We need to express that \bigcirc at level *i* has the universal propety with respect to every level *j*, not only *i*. We needed a construct like record types, but allowing each field to be individually universe-polymorphic. Modules do the job.

Perhaps, Set in agda?

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	00000000	○○○	○●○
Applications				

- Coquand: stack models for independence of
- Program/proof transformations (judgemental variant/Coq plugin by Tabareau et al)
- New mathematics: generalized Blakers-Massey (Anel, Biedermann, Finster, Joyal)
- physics by cohesive higher toposes (Schreiber, Shulman)

Higher toposes	Internal logic	Modalities	Sub-∞-toposes	Formalization
0000000000000	0000	000000000	000	00●
Conclusion				

- Modal type theory internalizes subtoposes from higher toposes
- Joint generalization of *n*-truncations and Lawvere-Tierney topologies
- three classes:
 - reflective universes, orthogonal factorization systems
 - modalities
 - lex modalities
- semantics in higher toposes

Basic theory of modalities (83pp) 1706.07526 formalization in the HoTT library