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5 System Fω

In the previous section, we defined a number of types in terms of other types,
such as list σ and σ × τ . However, list and × are not part of the language
themselves; rather, they are notations defined outside the language. One way
of extending the calculus would be to allow type-level functions, by allowing
abstraction over types at the type level. We could thus define list and × as
functions within the language.

Suppose that we wish to define something like

list = Λβ.∀α. α→ (β → α→ α)→ α

This is not itself a type. It is a function that takes a type and returns a type.
By allowing abstraction and application at the type level, we need to be able to
characterise terms that are well-formed types. We thus introduce a higher-level
type of (basic) types, ∗. The idea then is that we should have list : ∗ → ∗. We
call these higher-level types kinds, which are defined as:

κ ::= ∗ | κ1 → κ2

Now that we have ∗, we can dispense with Λ by considering Λβ.M as syntax
for λβ : ∗.M . Our terms now can abstract over variables of two sorts:

M,N ::= x | λx : σ.M |MN | λα : κ.M |Mσ

Correspondingly, our types include polymorphism at a given kind and type
abstraction and application:

σ, ρ ::= α | σ → ρ | ∀α : κ. σ | λα : κ. σ | σρ

Since we have abstraction at the type level, we also have β-reduction at the
type level. The reduction rules for redexes are:

(λα : κ. σ)ρ→β σ[ρ/α] (λα : κ.M)ρ→β M [ρ/α]

(λx : σ.M)N →β M [N/x]

We also have all contextual rules, permitting reduction of arbitrary subterms
(at both the type and term level). For instance

σ →β σ
′

Mσ →β Mσ′
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Our type system consists of two judgements: Γ ` M : σ, that a term has a
given type in a context; and Γ ` σ : κ, that a type-level term has a given kind
in a context.

Since we can abstract over types at the type level, contexts contain both
type judgements (x : σ) and kind judgements (α : κ). Because the type of a
term variable may include a type variable in the context, we require that the
context is linearly ordered (i.e. it is a list). (We require that variables are not
declared more than once in a given context, however.)

Since we have abstraction at the type level, we need typing rules to determine
when type-formers are well-kinded. The rules are:

Start
α /∈ FV(Γ)

Γ, α : κ ` α : κ

→ formation
Γ ` σ : ∗ Γ ` ρ : ∗

Γ ` σ → ρ : ∗

∀ formation
Γ, α : κ ` σ : ∗
Γ ` ∀α : κ. σ : ∗

→ introduction
Γ, α : κ1 ` σ : κ2

Γ ` λα : κ1. σ : κ1 → κ2

→ elimination
Γ ` σ : κ1 → κ2 Γ ` ρ : κ1

Γ ` σρ : κ2

Note that this is essentially a simply-typed lambda calculus, but with additional
formation rules for the type constructors→ and ∀, which construct types of kind
∗. Note that we can only have → between types of kind ∗. Moreover, we can
only ∀-quantify type variables, and only over types of kind ∗. In particular (λα :
κ. α) → β is not a well-kinded type in any context, since ` (λα : κ. α) : ∗ → ∗
(and not ∗).

The typing rules for term-formers are:

Start
Γ ` σ : ∗ x /∈ FV(Γ)

Γ, x : σ ` x : σ

→ introduction
Γ, x : σ `M : ρ Γ ` σ → ρ : ∗

Γ ` λx : σ.M : σ → ρ

→ elimination
Γ `M : σ → ρ Γ ` N : σ

Γ `MN : ρ

∀ introduction
Γ, α : κ `M : ρ Γ ` ∀α : κ. ρ : ∗

Γ ` λα : κ.M : ∀α : κ. ρ

∀ elimination
Γ `M : ∀α : κ. ρ Γ ` σ : κ

Γ `Mσ : ρ[σ/α]

Conversion
Γ `M : σ Γ ` σ′ : ∗ σ =β σ

′

Γ `M : σ′

These rules (except for Conversion) are essentially the same as those for Sys-
tem F, except that the introduction rules check that the type being constructed
has kind ∗. All of the types of System F have kind ∗, so there is no need for
this check there. Note that the rules guarantee that the kind of the type of a
term will always be ∗. So for instance, we can have terms of type list nat, but
not of type λα. list α.

The Conversion rule allows us to exploit type-level computation. Specif-
ically, we can change the type of a term to any β-equivalent type. Note that
this is the first typing rule that has not been syntax-directed: that is, the ap-
plicability of the Conversion rule does not depend on the syntax of the term
being typed — it applies to every term. This complicates type-checking, i.e. de-
termining whether Γ ` M : σ holds. However, we can at least exploit the fact
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that the β-reduction for types is strongly-normalising (as in the simply-typed
lambda calculus). It is thus decidable whether β-equivalence holds by simply
computing the (unique) normal forms of the two types and comparing them.

Since we have moved from unordered to ordered contexts, we need to add
rules for manipulating the context, namely the following weakening rules:

Γ ` σ : κ α /∈ FV(Γ)

Γ, α : κ′ ` σ : κ

Γ ` σ : κ Γ ` α : κ′ x /∈ FV(Γ)

Γ, x : α ` σ : κ

Γ `M : σ α /∈ FV(Γ)

Γ, α : κ′ `M : σ

Γ `M : σ Γ ` α : κ′ x /∈ FV(Γ)

Γ, x : α `M : σ

5.1 Examples

We can define a type constructor for lists:

list = λβ : ∗.∀α : ∗. α→ (β → α→ α)→ α

We want this to be well-kinded.

β : ∗, α : ∗ ` α : ∗

β : ∗ ` β : ∗
β : ∗, α : ∗ ` β : ∗

β : ∗, α : ∗ ` α : ∗
β : ∗, α : ∗ ` α→ α : ∗

β : ∗, α : ∗ ` β → α→ α : ∗ β : ∗, α : ∗ ` α : ∗
β : ∗, α : ∗ ` (β → α→ α)→ α : ∗

β : ∗, α : ∗ ` α→ (β → α→ α)→ α : ∗
β : ∗ ` ∀α : ∗. α→ (β → α→ α)→ α : ∗

` λβ : ∗.∀α : ∗. α→ (β → α→ α)→ α : ∗ → ∗

A common operation on lists is to apply a function on each element of the
list. This function is typically called map, and has the following type signature:

map : ∀α : ∗, β : ∗. (α→ β)→ list α→ list β

We can define this function as follows:

map = λα : ∗, β : ∗. λf : α→ β, l : list α.

λγ : ∗, n : γ, c : β → γ → γ. lγn(λx : α. c(fx))

Let’s deconstruct this definition a little bit. From the type signature, we
can see that map takes two type parameters (α : ∗, β : ∗) a function parameter
(f : α→ β) and a list parameter (l : list α). Here, we think of list as standing
for its definition above, so we have1

list α = (λβ : ∗.∀α : ∗. α→ (β → α→ α)→ α)α

= (λγ : ∗.∀δ : ∗. δ → (γ → δ → δ)→ δ)α

=β ∀δ. δ → (α→ δ → δ)→ δ

list β =β ∀γ. γ → (β → γ → γ)→ γ

1Remember that in =β , the β refers to β-equivalence, not to any variable named β.
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Now map has to produce a result of type list β, but the Conversion rule
means that it can produce a result of any type that is β-convertible to list β.
In particular, the result can be of type ∀γ. γ → (β → γ → γ) → γ. That is,
a function that takes a type (γ : ∗), a handler for the nil case (n : γ) and a
handler for the cons case (c : β → γ → γ) and returns a result of type γ. We
can think of defining our result by primitive recursion over the lists:

h(nil) = n

h(cons x l′) = c(fx)(hl′)

That is for nil we return the handler for nil, n; and for cons x l′ we call the
handler c with fx and the result of mapping over the rest of the list. The
Church encoding means that hl = lγn(λx : α. c(fx)). This then gives us the
body of our function.

We could define map-like functions for other type constructors. For instance,
a function on tree that applies the given function to all leaves of the tree. Or
on λα : ∗. α, we could define it to be

λβ : ∗, γ : ∗, f : β → γ, a : ((λα : ∗. α)β). fa

We can define a higher-order type constructor that generates the type of map-
like functions for a type constructor of kind ∗ → ∗:

Map = λA : (∗ → ∗). (∀α : ∗, β : ∗. (α→ β)→ A α→ A β)

It is perfectly possible to nest type constructors, for instance: list (list bool);
tree (list nat). So we can also compose type constructors: λα : ∗. list (list α).
Given map-like functions on two type constructors, we can compose them to
obtain a map-like function on the composition of the constructors:

mapComp : ∀A : (∗ → ∗).Map A→
∀B : (∗ → ∗).Map B→

Map (λα : ∗.A (B α))

mapComp = λA : ∗ → ∗,mapA : Map A,B : ∗ → ∗,mapB : Map B.

λα : ∗, β : ∗, f : α→ β.

mapA (B α) (B β) (mapB α β f)

Let us check that this term is well-typed. Let

Γ0 = A : ∗ → ∗,mapA : Map A,B : ∗ → ∗,mapB : Map B

Γ1 = Γ0, α : ∗, β : ∗, f : α→ β

Figure 5.1 shows the key part of the typing derivation. The derivation has
been cut off where subderivations follow from weakening and Start. Deriva-
tions that types have kind ∗, such as the following, have been omitted. Also
omitted are premisses that terms are β-equivalent.
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Γ1, γ : ∗ ` A : ∗ → ∗
Γ1, γ : ∗ ` B : ∗ → ∗ Γ1, γ : ∗ ` γ : ∗

Γ1, γ : ∗ ` B γ : ∗
Γ1, γ : ∗ ` A (B γ) : ∗

Γ1 ` λγ : ∗.A (B γ) : ∗ → ∗ Γ1 ` β : ∗
Γ1 ` (λγ : ∗.A (B γ))β : ∗

5.2 Logic

Recall that in System F we defined φ ∨ ψ = ∀θ. (φ → θ) → (ψ → θ) → θ. In
Fω, we can promote ∨ to a function at the type level:

∨ = λφ : ∗, ψ : ∗.∀θ : ∗. (φ→ θ)→ (ψ → θ)→ θ

We can similarly define the other connectives of propositional logic as type-level
functions.

When we are using Fω as a logic, we can think of ∗ as being the “type of
propositions”. Note, however, that ∗ is not a type, but a kind.

5.3 A Collapsed Presentation

The version of System Fω that we have seen had three distinct syntactic cate-
gories: terms, types and kinds. Some of the syntax of the language is duplicated
between these levels (e.g. λ abstraction at both term and type levels, and → at
both type and kind levels). This also leads to duplication in the typing rules.

An alternative presentation is to combine the syntactic categories and use
the types to determine whether a term represents as base term, a type or a kind.
Our terms are then:

M,N, σ, ρ, κ ::= x | s |MN | λx : M.N |M → N | ∀x : M.N

Here, x ranges over syntactic variables. (We do not distinguish term variables
and type variables, although we may suggestively use x, y, z for term variables
and α, β, γ for type variables.) Moreover, s ∈ {∗,�} ranges over the set of sorts
(constants) which include the familiar sort of types ∗ and a new sort of kinds
�.
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Axiom

` ∗ : �

Start
Γ ` σ : s x /∈ FV(Γ)

Γ, x : σ ` x : σ

Weakening
Γ `M : σ Γ ` ρ : s x /∈ FV(Γ)

Γ, x : ρ `M : σ

→ formation
Γ ` σ : s Γ ` ρ : s

Γ ` σ → ρ : s

∀ formation
Γ ` κ : � Γ, α : κ ` σ : ∗

Γ ` ∀α : κ. σ : ∗

→ introduction
Γ, x : σ `M : ρ Γ ` σ → ρ : s

Γ ` λx : σ.M : σ → ρ

∀ introduction
Γ, α : κ `M : σ Γ ` ∀α : κ. σ : s

Γ ` λα : κ.M : ∀α : κ. σ

→ elimination
Γ `M : σ → ρ Γ ` N : σ

Γ `MN : ρ

∀ elimination
Γ `M : ∀α : κ. σ Γ ` ρ : κ

Γ `Mρ : σ[ρ/α]

Conversion
Γ `M : σ Γ ` σ′ : s σ =β σ

′

Γ `M : σ′

5.4 Exercises

Exercise 18. Give a derivation that the following type has kind ∗:

∀α : ∗. (α→ α)→ (λF : ∗ → ∗.∀β : ∗. Fβ → Fβ)(λγ : ∗. α)

Give a derivation for the following typing judgement in Fω:

` λα : ∗, g : α→ α, β : ∗. g
: ∀α : ∗. (α→ α)→ (λF : ∗ → ∗.∀β : ∗. Fβ → Fβ)(λγ : ∗. α)

Compare derivations in the stratified presentation and the collapsed presenta-
tion.

Exercise 19. Let A : ∗ → ∗. We call A pointed if there is a function f :
∀α. α→ Aα. Define Pointed := λA : ∗ → ∗.∀α. α→ Aα. Find a term of type
Pointed list. Find a term of type

∀A : ∗ → ∗.Pointed A→ ∀B : ∗ → ∗.Pointed B→ Pointed (λα : ∗.A(Bα))

Exercise 20. Recalling the definition from System F, ⊥ = ∀α : ∗. α. We can
define negation as ¬ = λα : ∗. α→ ⊥. Find a term M such that

φ : ∗, ψ : ∗ `M : (φ→ ψ)→ (¬ψ → ¬φ)

Exercise 21. Following Exercise 17, define a conjunction term ∧ such that
` ∧ : ∗ → ∗ → ∗, and which satisfies the appropriate axioms. Find a term M
such that

φ : ∗ `M : ¬(φ ∧ ¬φ)

(where A ∧B here is just syntactic sugar for ∧AB).
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6 Calculus of Constructions

So far, we have seen:

• terms parametrised by terms λx : σ.M , in simply-typed lambda calculus;

• terms parametrised by types Λα.M (or λα : ∗.M), in System F; and

• types parametrised by types λα : ∗. σ, in System Fω.

Following this line of thinking, it makes sense to add types parametrised by
terms to our calculus — so-called dependent types. In doing so, we obtain the
Calculus of Constructions (CoC), introduced by Coquand and Huet in 1985.

To present CoC, we will not syntactically differentiate between terms at the
term, type and kind levels, following the collapsed presentation of Fω. The
terms of CoC are:

M,N, σ, ρ, κ ::= x | s |MN | λx : M.N | ∀x : M.N

where x ranges over syntactic variables and s ∈ {∗,�} ranges over sorts. No-
tably, M → N is absent from the syntax; we treat it as syntactic sugar (i.e. a
notational convention) for ∀x : M.N , where x /∈ FV(N).

Axiom

` ∗ : �

Start
Γ ` σ : s x /∈ FV(Γ)

Γ, x : σ ` x : σ

Weakening
Γ `M : σ Γ ` ρ : s x /∈ FV(Γ)

Γ, x : ρ `M : σ

∀ formation
Γ ` σ : s1 Γ, x : σ ` ρ : s2

Γ ` ∀x : σ. ρ : s2

∀ introduction
Γ, x : ρ `M : σ Γ ` ∀x : ρ. σ : s

Γ ` λx : ρ.M : ∀x : ρ. σ

∀ elimination
Γ `M : ∀x : ρ. σ Γ ` N : ρ

Γ `MN : σ[N/x]

Conversion
Γ `M : σ Γ ` σ′ : s σ =β σ

′

Γ `M : σ′

Compared with Fω, the key point is that the ∀ formation rule has been
generalised: before, it could only be that s1 = � and s2 = ∗. With this rule, we
can construct:

• The type of a term parametrised by a term, by choosing s1 = ∗ and s2 = ∗:

∀F
Γ ` σ : ∗ Γ, x : σ ` ρ : ∗

Γ ` ∀x : σ. ρ : ∗

Previously, this would have been the type α→ σ, formed as

→F
Γ ` σ : ∗ Γ ` ρ : ∗

Γ ` σ → ρ : ∗

This can be seen as a special case, when x /∈ FV(ρ). However, we now
allow types (in this case ρ) to depend on term variables (x).
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• The type of a term parametrised by a type, by choosing s1 = � and s2 = ∗:

∀F
Γ ` κ : � Γ, α : κ ` ρ : ∗

Γ ` ∀α : κ. ρ : ∗

This is the version of the rule seen in Fω. It is also essentially the same
as for System F, except that we must check that κ is a well-formed kind,
since we do not have syntactic stratification.

• The kind of a type parametrised by a type, by choosing s1 = � and
s2 = �:

∀F
Γ ` κ1 : � Γ, α : κ1 ` κ2 : �

Γ ` ∀α : κ1. κ2 : �

This is a generalisation of the → formation rule:

→F
Γ ` κ1 : � Γ ` κ2 : �

Γ ` κ1 → κ2 : �

• The kind of a type parametrised by a term, by choosing s1 = ∗ and s2 = �:

∀F
Γ ` σ : ∗ Γ, x : σ ` κ : �

Γ ` ∀x : σ. κ : �

6.1 Some Properties of CoC

The substitution lemma for CoC generalises the equivalent lemma for STLC
somewhat. Since terms may occur in types, we have to substitute not only in
the term, but also in the type and the context. Recall that contexts for CoC
are ordered, and types may depend on variables occurring earlier in the context
(but not later).

Lemma 4 (Substitution). Suppose that Γ, x : σ,∆ `M : ρ and Γ ` N : σ Then
Γ,∆[N/x] `M [N/x] : ρ[N/x].

Lemma 5. No well-typed term in CoC contains � as a subterm.

Proof. By induction on typing derivations: no rule introduces such a subterm.

Lemma 6. If Γ `M : σ then either σ = � or Γ ` σ : s.

Proof. By induction on the structure of the derivation of Γ `M : σ.

• Axiom: trivially σ = �.

• Start, Conversion and ∀ introduction: immediate from premisses.

• Weakening: immediate from the induction hypothesis.

• ∀ formation: trivial since s2 ∈ {∗,�}.

• ∀ elimination: We must have M = M ′N and σ = σ′[N/x] with Γ `
M ′ : ∀x : ρ. σ′ and Γ ` N : ρ. By the inductive hypothesis, we have that
Γ ` ∀x : ρ. σ′ : s. Since this judgement must be derived by ∀ formation,
it must be that Γ, x : ρ ` σ′ : s. By the substitution lemma, since
Γ ` N : ρ, it follows that Γ ` σ′[N/x] : s.
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We state the following two important theorems without proof.

Theorem 3. The Calculus of Constructions is strongly normalising (with re-
spect to →β).

Theorem 4. Type-checking in the Calculus of Constructions is decidable.

6.2 Dependent Types

One use of dependent types is to define more constrained types. For instance,
we could have a dependent type vector : ∗ → nat→ ∗ such that vector σ n is
a list of terms of type σ of length n. There are two constructors:

vnil : vector σ 0

vcons : ∀n : nat. σ → vector σ n→ vector σ (Sn)

vector = λσ : ∗, n : nat, v : nat→ ∗. v0→ (∀n′ : nat. σ → vn′ → v(Sn′))→ vn

6.3 Logic

In CoC, under the propositions-as-types interpretation, we can think of ∗ as the
“type of propositions”. A proposition is valid if it has a proof: i.e. the type
has an inhabitant (a term of that type). With dependent types, we can now
consider terms of type σ → ∗, for any type σ : ∗. Such terms assign a truth
value (i.e. proposition) to each inhabitant of the type σ. We can thus think of
such terms as predicates over σ.

For example, we could have a predicate Zero : nat → ∗. We would like
Zero 0 to be valid, but not Zero (Sn) for any n. We can give a Church-style
encoding by considering it to be a parametrised inductive type with a single
constructor z0 : Zero 0.

Zero = λn : nat.∀Z : nat→ ∗. Z0→ Zn

One way of interpreting this is that a term of type Zero n transforms a proof
that an arbitrary property Z holds for 0 to a proof that Z holds for n.

The choice of 0 and even of the type nat was essentially arbitrary, so we can
generalise this to a definition of equality (or identity) at a type:

Id = λα : ∗, x : α, y : α.∀P : α→ ∗. Px→ Py

This definition is called Leibniz equality, as it was initially proposed by Gottfried
Wilhelm Leibniz. For two terms to be Leibniz equal, there must be no predicate
that distinguishes between them. Moreover it embodies an essential elimination
principle for equality: if two things are equal then any property of one is a
property of the other.2 Clearly, if two terms are β-equivalent then they will be
Leibniz equal.

2In the Calculus of Inductive Constructions (the type system of Coq), equality is not
defined this way, but as an inductive type. This gives a stronger elimination principle (called
Axiom J) that
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To be a reasonable notion of equality, Id must be an equivalence relation:
that is, it must be reflexive, symmetric and transitive. Leibniz equality satisfies
all of these.

Reflexivity:

α : ∗, x : α ` λP : α→ ∗. λp : Px. p : Id α x x

Symmetry:

α : ∗, x : α, y : α,H : Id α x y ` H(λz : α. Id α z x)(λP : α→ ∗. λp : Px. p) : Id α y x

Transitivity (exercise):

α : ∗, x : α, y : α, z : α,H1 : Id α x y,H2 : Id α y z ` ? : Id α x z

6.3.1 Functional Extensionality

Functional extensionality is the principle that two functions f and g are equal
if, for all x, f(x) = g(x). This is a principle which holds in set theory, but
which is not provable with Leibniz equality in CoC. That is, it is not possible
to construct a term of the following type:

∀α : ∗, β : ∗, f : α→ β, g : α→ β. (∀x : α. Id β (fx) (gx))→ Id (α→ β) f g

However, it is possible to assume the existence of such a term as an axiom
without introducing inconsistency.

6.4 Models of Type Theory

We’ve stated that functional extensionality is independent of CoC: that is, it
is not provable, but not inconsistent. How would we go about proving such
a thing? We cannot really do so inside CoC itself, since we do not have a
mechanism for describing provability. The answer is to consider models of the
theory.

A model of a type theory interprets types, terms and judgements in a dif-
ferent theory, such as set theory or category theory. For instance, a model in
set theory might interpret contexts Γ as sets and the judgement Γ `M : σ as a
function from the interpretation of Γ to the interpretation of σ (in the context
Γ).

We can show that axiom is independent by showing that there are models
where the axiom is valid and models where it is not. For example, we could have
a model where functions are represented by set-theoretic functions, and so func-
tional extensionality is valid. On the other hand, we could have a model where
there are more functions than those that interpret terms; in such a model there
can be a predicate that distinguishes terms that are extensionally equivalent.

We will not talk about models in this course, but it is sometimes useful to
think about them to develop intuition.

6.5 Exercises

Exercise 22. For each of the following, determine whether the typing judge-
ment is valid in CoC. If so, determine for which pairs (s1, s2) the ∀ formation
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rule is used:
∀ formation
Γ ` σ : s1 Γ, x : σ ` ρ : s2

Γ ` ∀x : σ. ρ : s2

1.

` λF : ∗ → ∗, u : (∀β : ∗. F β → β), α : ∗, x : F α. uαx

: ∀F : ∗ → ∗. (∀β : ∗. F β → β)→ ∀α : ∗. F α→ α

2.
α : ∗, F : α→ ∗, y : α ` λg : (∀x : α. Fx). gy : (∀x : α. Fx)→ Fy

3.
α : ∗, x : α ` x : α

4.
α : ∗, x : α, F : α→ ∗ ` Fx : ∗

5.
α : ∗, F : (∗ → ∗)→ ∗, G : α→ α ` FG : ∗

Exercise 23. Recall the definition of Leibniz equality:

Id = λα : ∗, x : α, y : α.∀P : α→ ∗. Px→ Py

Show that equality is transitive. That is, find a term trans with

α : ∗, x : α, y : α, z : α,H1 : Id α x y,H2 : Id α y z ` trans : Id α x z

Recall the following definitions:

nat : ∗ = ∀α : ∗. α→ (α→ α)→ α

0 : nat = λα : ∗, o : α, s : α. o

S : nat→ nat = λn : nat. λα : ∗, o : α, s : α→ α. s(nαos)

plus : nat→ nat→ nat = λn : nat,m : nat. λα : ∗, o : α, s : α→ α. nα(mαos)s

Id : ∀α : ∗. α→ α→ ∗ = λα : ∗, x : α, y : α.∀P : α→ ∗. Px→ Py

refl : ∀α : ∗, x : α. Id α x x = λα : ∗, x : α, P : α→ ∗, H : Px.H

Exercise 24. Prove that

∀x : nat, y : nat. Id nat (plus (Sx) y) (S (plus x y))

That is, find a term that inhabits the above type.

Exercise 25. The Church encoding of natural numbers is sufficient to define
(primitive) recursive functions, but not to prove inductive properties. For that
we postulate (i.e. assume) an induction axiom:

natInd : ∀P : nat→ ∗. P0→ (∀n : nat. Pn→ P (Sn))→ ∀m : nat. Pn

This allows us to show that property P holds for all m by showing:
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1. P holds for 0

2. assuming that P holds for some n (the induction hypothesis) then P holds
for Sn.

Using natInd, prove that

∀x : nat, y : nat. Id nat (plus x (S y)) (S (plus x y))

Hints:

• You do not need to unfold the definition of nat. If you use the results of
the previous two exercises, then it should also not be necessary to unfold
Id, although a more direct proof is possible if you do unfold Id.

• Use natInd with the predicate

λn : nat. Id nat (plus n (Sy)) (S (plus n y))
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