
Functional Programming Lecture Notes - Part 2

Thomas Dinsdale-Young

8th September, 2017

3 Simply-typed Lambda Calculus

The lambda calculus we have seen so far has no typing discipline. A function
could be applied to a boolean, a number, a pair, another function or indeed any
other term, without regard for the intention of the function. Types provide a
way of specifying properties of functions and enforcing correct usage.

The types of the simply-typed lambda calculus are defined as:

σ, ρ ::= τ | σ → ρ

where τ ranges over an infinite set of type variables. By convention, α→ β → γ
is interpreted as α→ (β → γ). If we were to add additional types to the lambda
calculus, such as booleans or numbers, we would add type constants for these.
For now, however, we only have type variables and function types. The reading
of the type σ → ρ is the type of functions from σ to ρ.

Terms of the simply-typed lambda calculus are as before, except that we
attach a type to each lambda abstraction that indicates the source type of the
function:

M,N ::= x |MN | λx : σ.M

We want to define a judgement that associates a type with a lambda term.
However, to do so, we need to know the types of the free variables in a term.
A typing context Γ is a list of pairs x : σ of variables and types. We assume
that each variable occurs at most once in a typing context. (For now, the list
might as well be a set — the order is not significant, and to simplify some
considerations, we will sometimes treat it like a set. Later, however, we shall
see more elaborate type systems where the order does become significant.)

The typing judgement Γ `M : σ assigns type σ to term M in typing context
Γ. It is defined as follows:

Start
(x : σ) ∈ Γ

Γ ` x : σ

→ elimination
Γ `M : σ → ρ Γ ` N : σ

Γ `MN : ρ

→ introduction
Γ, x : σ `M : ρ

Γ ` (λx : σ.M) : σ → ρ

Let’s look at this judgement in action with a few examples. First, the identity
function:

→I

St
x : α ` x : α

` λx : α. x : α→ α

1

We can type the function differently if we give its argument a different type.

→I

St
x : α→ β ` x : α→ β

` λx : α→ β. x : (α→ β)→ (α→ β)

→I

St
x : (α→ β)→ γ ` x : (α→ β)→ γ

` λx : (α→ β)→ γ. x : ((α→ β)→ γ)→ (α→ β)→ γ

We can also type other familiar functions:

x : α, y : β ` x : α

x : α ` λy : β. x : β → α

` λx : α, y : β. x : α→ β → α

→I

→I

→I

→E

St
Γ ` x : α→ (β → γ)

St
Γ ` z : α

Γ ` xz : β → γ
→E

St
Γ ` y : α→ β

St
Γ ` z : β

Γ ` yz : β

x : α→ β → γ, y : α→ β, z : α ` xz(yz) : α→ γ

x : α→ β → γ, y : α→ β ` λz : α. xz(yz) : α→ γ

x : α→ β → γ ` λy : α→ β, z : α. xz(yz) : (α→ β)→ α→ γ

` λx : α→ β → γ, y : α→ β, z : α. xz(yz) : (α→ β → γ)→ (α→ β)→ α→ γ

where Γ = [x : α→ β → γ, y : α→ β, z : α].
Notice that the typing rules are entirely directed by the syntax of terms.

That is to say, for any given term, exactly one of the typing rules can apply,
depending on whether the term is a variable (Start), application (→ elimina-
tion) or abstraction (→ introduction). It is thus simple to decide whether
Γ ` M : σ holds — simply apply the typing rules until you either fail or build
a correct derivation.

There are terms that cannot be typed. For example, consider the term xx.
To type this term, the application rule requires that x : σ → ρ ∈ Γ and x : σ ∈ Γ
for some σ and ρ. We would thus require a type σ such that σ = (σ → ρ), which
is just not possible.

A useful property of the typing judgement is that if a term is typeable, then
it is also typeable in an extended context.

Lemma 1 (Weakening). If Γ `M : σ and Γ,Γ′ is a well-defined typing context,
then Γ,Γ′ `M : σ.

Proof sketch. Simply replace Γ with Γ,Γ′ in the derivation of Γ ` M : σ. The
derivation will remain valid up to renaming of variables bound in M (which
may clash with variables in Γ′).

Note that since we consider terms up to α-equivalence, we can always as-
sume that bound variables have different names from those in the context. For
instance, x : α ` λx : β. x : β → β holds because x : α ` λy : β. y : β → β holds,
and the terms are α-equivalent.

Conversely to the above, we can remove variables from the context that do
not occur in the term without affecting the typing judgement.

2

Lemma 2. If Γ,Γ′ ` M : σ and none of the variables in Γ′ occur free in M ,
then Γ `M : σ.

Proof sketch. Simply replace Γ,Γ′ with Γ in the initial derivation. The deriva-
tion will remain valid, since none of the axioms will refer to variables in Γ′.

An important property is that we can substitute a term for a free variable
of the same type in a judgement.

Lemma 3. Suppose that Γ, x : σ `M : ρ and Γ ` N : σ. Then Γ `M [N/x] : ρ.

Proof sketch. The derivation of Γ ` M [N/x] : ρ is obtained by replacing all
occurrences of

St
Γ, x : σ,Γ′ ` x : σ

in the derivation of Γ, x : σ ` M : σ by derivations of Γ,Γ′ ` N : σ (obtained
by weakening from Γ ` N : σ).

It follows from this that β-reduction preserves typing.

Theorem 1. If Γ `M : σ and M →β N , then Γ ` N : σ.

This result is important to our intuition about what types represent: if a
term has a given type then any result it computes to will also have that type.
For instance, if we have a function from numbers to booleans, and we call it with
a number, then we would expect the result of the evaluation to be a boolean.
This property of a type system is known as preservation.

Another important result is that all typed terms are normalising; indeed,
they are strongly normalising.

Theorem 2. If Γ ` M : σ then M is (strongly) normalising with respect to
β-reduction.

This means that terms which do not terminate cannot be typed in our sys-
tem. In particular, we might like to type a fixed-point combinator as (σ → σ)→
σ, yet we cannot, since applying it to λx : σ. σ will yield a non-terminating com-
putation. It is possible to add a typing rule for recursion, which is common in
general purpose functional programming languages, such as the following:

Γ, x : ρ `M : ρ Γ, x : ρ ` N : σ

Γ ` letrec x : ρ = M in N : σ

(The evaluation rule for letrec reduces letrec x : ρ = M in N to N [(letrec x : ρ =
M in M)/x].)

3.1 A Connection to Logic

The typing judgement Γ `M : σ may be very reminiscent of a proof judgement
Γ ` φ in formal logic, meaning that statement φ is provable from the assump-
tions Γ. The core proof rule of most logical systems is modus ponens: if “φ
implies ψ” holds and “φ” holds, then “ψ” holds. Formulated as a proof rule:

Γ ` φ→ ψ Γ ` φ
Γ ` ψ

3

This looks familiar. In fact, it is the same as the → elimination rule from our
type system, except without the terms.

One way of constructing a proof system is to take modus ponens together
with a system of axioms (called a Hibert-style system).1 One such system is the
following:

Γ ` A→ A Γ ` A→ (B → A)

Γ ` (A→ (B → C))→ ((A→ B)→ (A→ C))

These axioms should also look familiar: they correspond to the types of the
I, K and S combinators! These axioms generate the implicational fragment
of intuitionistic logic (called the positive implicational calculus). Intuitionistic
logic is the standard propositional logic without the law of the excluded middle
(the axiom A ∨ ¬A), and the implicational fragment consists of the formulae
that are expressible only using implication.

Another approach is to have a rule for introducing implications, and a rule
for using assumptions:

Γ, φ ` ψ
Γ ` φ→ ψ Γ, φ ` φ

Again, these should look familiar as the → introduction and Start rules of
the simply-typed lambda calculus, but without the terms.

There is a very close correspondence between logic and type theory, which
even goes beyond what we have seen so far. This correspondence is called the
Curry-Howard isomorphism. The slogan is that propositions are types, and a
proof of a proposition is a program of that type.

For example, consider a proof of the proposition x > 6 → x > 2. One way
of thinking of such a proof is as a function that transforms a proof that x > 6
into a proof that x > 2.

In the proof rules for logic, we did not have a term as we did for the lambda
calculus. However, we can reasonably think of typed lambda terms as being
proofs, since from them we can deterministically reconstruct the derivation tree.
(The proof rules are directed by the syntax of the term.)

In logic, we are typically only concerned with whether a proof exists, and
do not care what the proof is per se. Consequently, the proof judgement does
not include the proof term. By contrast, with programs we typically wish to
be able to run the program to obtain a result. Consequently, we really do care
what the program is.

Another contrast is that we may not care about whether a program ter-
minates, and therefore be willing to admit the letrec rule to our type sys-
tem. However, the letrec rule allows us to build a term of any type we like
(` letrec x : σ = x in x : σ). In a logic, however, we do not want every propo-
sition to be provable, so we could not admit such a rule: all proofs must be
terminating.

1For such systems, the context Γ is actually redundant.

4

3.2 Curry and Church-style Type Systems

The approach we have taken to the simply-typed lambda calculus has been to
associate a type with every abstraction; this is the approach taken by Church.
Another approach, taken by Curry, is not to associate types with abstractions.
In this case, the typing rule for λ-abstraction becomes:

→ introduction
Γ, x : σ `M : ρ

Γ ` (λx.M) : σ → ρ

In such a system, the type of a term is not uniquely determined by the term
itself. However, any typeable term does have a principal type — a type from
which all other valid types can be obtained by substituting type variables. For
instance, λx. x has principal type α→ α. It also has type (β → γ)→ (β → γ),
which is an instance of the principal type obtained by substituting (β → γ) for
α. Finding principal types can be done by type inference, which we will not
cover here.

3.3 Exercises

Exercise 10. Define the type of natural numbers nat = σ → (σ → σ) → σ.
Check that the Church numerals can be typed at this type. Recalling the
arithmetic operations from Exercise 8, which of these can be typed as operators
on nat? Which cannot, and why?

Exercise 11. Suppose that we add pairs to the λ-calculus. That is, we add
three new term formers to the language: 〈M,N〉 (the pair of M and N), π1M
(the first projection of M), and π2M (the second projection of M). We extend
β-reduction with rules for projecting pairs:

π1〈M,N〉 →β M π2〈M,N〉 →β N

Extend the types with the new type former for pairs: σ × τ .
Define three new typing rules, one for each new term former, such that the

new β-reduction rules preserve types.

Exercise 12. Besides α- and β-conversion, there is a third common conversion
rule for λ-calculus: η-conversion. For the simply-typed lambda calculus, η-
reduction is given by:

x /∈ FV(M)

λx : σ.Mx→η M

An intuitive way of viewing this is as an expression of functional extensionality:
the notion that two functions are equal if they map the same inputs to the
same outputs (i.e. if f(x) = g(x) for all x, then f = g). In particular, we have
(λx : σ.Mx)N →β MN .

Show that η-reduction preserves types. That is, if Γ ` λx : σ.Mx : ρ
and x /∈ FV(M) then Γ ` M : ρ. [Hint: ρ is not a base type. How does it
decompose?]

5

4 System F

One problem with the simply-typed lambda calculus is that the Church encoding
techniques we used to represent datastructures in the untyped lambda calculus
are less flexible in the simply-typed setting. For instance, we could represent
the booleans by the type bool = σ → σ → σ: true = λx : σ, y : σ. x and
false = λx : σ, y : σ. y both inhabit this type. We would like to define the
conditional operator if : bool → τ → τ → τ that returns the second argument
if the first is true and the third if it is false. However, our attempt to define such
an operator is doomed to failure:

Γ ` b : τ → (τ → τ) Γ ` x : τ

Γ ` bx : τ → τ Γ ` y : τ

Γ ` (bx)y : τ

` λb : bool, x : τ, y : τ. bxy : bool→ τ → τ → τ

where Γ = [b : σ → σ → σ, x : τ, y : τ]. The judgement Γ ` b : τ → (τ → τ)
simply does not hold. We cannot call b with x, since x has type τ and b expects
something of type σ.

Similar issues prevent us from defining the predecessor function on Church
numerals (per Exercise 10) and from representing pairs with σ× ρ = (σ → ρ→
α) → α. Of course, one solution is to simply extend the language with these
(and any other) datatypes (as in Exercise 11).

Alternatively, we can observe that the problem with how we are representing
these datatypes is that they are too specific: our true has type α → α → α for
some specific α, when we would like it to have that type for every choice of α.
What would permit us to do this is to parametrise true (and other terms) by
the type α, effectively abstracting over the type. To do this, we introduce a new
notation for type abstraction: Λα.M . This allows us to define a polymorphic
version of true:

Λα. λx : α, y : α. x

Just as we use a λ-abstraction by applying it to a term, we use a Λ-abstraction
by applying it to a type. The terms of this new calculus are thus:

M,N ::= x |MN | λx : σ.M |Mσ | Λα.M

We correspondingly extend the β-reduction rules with:

(Λα.M)σ →β M [σ/α]

We also need a type constructor to correspond to Λ-abstraction. If term M
has type σ then we can think of term Λα.M as having “type σ for all choices of
α” (noting that α may well occur in the type σ). The type constructor is thus
∀α. σ (read as “for all α, σ”). The types are then:

σ, ρ ::= α | σ → ρ | ∀α. σ

Note that ∀α. σ binds occurrences of the type variable α in the type σ; simi-
larly, Λα.M binds occurrences of the type variable α in the term M . This has

6

implications for α-equivalence: we consider terms to be identical if they differ
only in the names of their bound type (e.g. α) and term (e.g. x) variables. It
also has implications for substitution: we do not substitute bound occurrences
of a variable, and we avoid variable capture under substitution.

Now we get to the typing judgement.

Start
(x : σ) ∈ Γ

Γ ` x : σ

→ elimination
Γ `M : σ → ρ Γ ` N : σ

Γ `MN : ρ

→ introduction
Γ, x : σ `M : ρ

Γ ` (λx : σ.M) : σ → ρ

∀ elimination
Γ `M : ∀α. σ

Γ `Mρ : σ[ρ/α]

∀ introduction
Γ `M : σ α /∈ FV(Γ)

Γ ` Λα.M : ∀α. σ

Note that the ∀ introduction rule has the condition α /∈ FV(Γ): that is,
α does not occur in the free variables of Γ. This condition is essential, since
otherwise we could construct such derivations as

x : α ` x : α

x : α ` Λα. x : ∀α. α
x : α ` (Λα. x)σ : σ

Considering that β-reduction should preserve typing, we would thus expect to
have x : α ` x : σ, which does not make sense. The problem is that we have
captured the variable α, which should refer to the type of x in the context.

This calculus is called System F, or second-order lambda calculus. It was
discovered independently by Jean-Yves Girard and John C. Reynolds in the
1970s. As with the simply-typed lambda calculus, well-typed terms are strongly
normalising.

4.1 Encoding Datatypes

Recall that the Church encoding of datatypes in the untyped setting was to
represent a value as a function that takes in interpretations of the constructors
and produces the corresponding value in terms of them. In System F, we can
represent such values as also being parametrised by the type to interpret the
value in.

For example, with the natural numbers

n ::= 0 | Sn

we can represent numbers as

0 = Λν. λo : ν, s : ν → ν. o 1 = Λν. λo : ν, s : ν → ν. so

2 = Λν. λo : ν, s : ν → ν. s(so) 3 = Λν. λo : ν, s : ν → ν. s(s(so))

4 = Λν. λo : ν, s : ν → ν. s(s(s(so)))

each of which has type ∀ν. ν → (ν → ν)→ ν.
Note that the type of natural numbers allows us to define functions by recur-

sion on natural numbers. A definition by recursion defines the function f explic-
itly at f(0), and defines f(S n) in terms of f(n). That is, f : nat→ σ is given

7

by some base : σ and rec : σ → σ. We can thus define f = λn : nat. n σ base rec
which has type nat→ σ given nat = ∀ν. ν → (ν → ν)→ ν.

We can also represent datatypes that are defined in terms of other types. For
example, the type of pairs of values of types σ and ρ: σ×ρ. An implementation
of such pairs has one constructor that takes a σ and a ρ to give a pair. We can
therefore interpret σ×ρ as ∀α. (σ → ρ→ α)→ α. The pair of M and N (having
types σ and τ respectively) is thus represented as Λα. λp : σ → τ → α. pMN .

As another example, consider lists of values of type σ: list σ. Lists have two
constructors:

nil : list σ

cons : σ → list σ → list σ

We can therefore interpret the type as

list σ = ∀α. α→ (σ → α→ α)→ α

4.2 Logic

We have already seen a correspondence between propositional logic and the
simply-typed lambda calculus. One way to extend this is to represent additional
propositional connectives (∧,∨,⊥, . . .) as type constructions. To do so, let us
consider the axioms for each connective, and choose types that allow us to satisfy
these axioms.

First, consider ⊥. The one axiom2 for ⊥ is elimination:

⊥ → φ

That is to say, everything follows from ⊥. An appropriate choice for ⊥ is the
type ∀α. α, since we have

→I

∀E
St

f : (∀α. α) ` f : (∀α. α)

f : (∀α. α) ` fψ : ψ

` λf : (∀α. α). fψ : (∀α. α)→ ψ

Second, consider φ ∨ ψ. Disjunction has two introduction axioms:

φ→ (φ ∨ ψ) ψ → (φ ∨ ψ)

From either φ or ψ we can get φ∨ψ. Disjunction also has one elimination axiom:

(φ→ θ)→ (ψ → θ)→ (φ ∨ ψ)→ θ

If we can obtain θ from φ and also from ψ, then we can obtain it from φ ∨ ψ.
The elimination rule can give us an idea of how to interpret φ ∨ ψ: for any
θ, we want to obtain θ given that φ → θ and ψ → θ. So we can choose
φ ∨ ψ = ∀θ. (φ→ θ)→ (ψ → θ)→ θ. We then have:

` λf : (φ→ θ), g : (ψ → θ), h : (φ ∨ ψ). hθfg : (φ→ θ)→ (ψ → θ)→ (φ ∨ ψ)→ θ

` λa : φ.Λθ. λf : (φ→ θ), g : (ψ → θ). fa : φ→ (φ ∨ ψ)

` λg : ψ.Λθ. λf : (φ→ θ), g : (ψ → θ). gb : ψ → (φ ∨ ψ)
2Technically, this is an axiom schema — every instance obtained by substituting the free

variables is an axiom.

8

4.3 Exercises

Exercise 13. If the side condition α /∈ FV(Γ) is dropped from the ∀ intro-
duction rule, show that there is a closed term (i.e. having no free variables)
of type σ for arbitrary σ.

Exercise 14. For lists, define functions

nil : ∀β. list β
cons : ∀β. β → list β → list β

Such that nil σ produces the empty list and cons σ x l constructs the list with
head x and tail l. Check that these function satisfy their types. Check that

cons nat 1 (cons nat 2 (nil nat)) =β Λα. λn : α, c : (nat→ α→ α). c1(c2n)

Define the function

concat : ∀β. list β → list β → list β

that concatenates two lists. Check that

concat nat (Λα. λn : α, c : (nat→ α→ α). c1n) (Λα. λn : α, c : (nat→ α→ α). c2n)

=β Λα. λn : α, c : (nat→ α→ α). c1(c2n)

Exercise 15. Define the function

reverse : ∀β. list β → list β

that reverses a list. To do so, it may be helpful to first define a function

reverseHelp : ∀β. list β → list β → list β

such that reverseHelp β a b = concat β (reverse β a) b. Check that your function
is well-typed, and that it computes the expected output on some appropriate
input.

Exercise 16. Binary trees tree σ over a type σ are defined by two constructors:

leaf : σ → tree σ

branch : tree σ → tree σ → tree σ

Define the type of trees as a Church encoding. Define a function leaves :
∀β. tree β → list β that collapses a tree to a list of leaves (in left-to-right
order). You may assume the concat operator on lists.

Exercise 17. The introduction axiom for conjunction is

φ→ ψ → φ ∧ ψ

and the elimination axioms are

φ ∧ ψ → φ

φ ∧ ψ → ψ

Define an interpretation of φ ∧ ψ as a type, and give terms that interpret the
axioms. Is this familiar?

9

