
This article was downloaded by: [Statsbiblioteket Tidsskriftafdeling]
On: 09 July 2012, At: 14:28
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Computer Science Education
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ncse20

Persistence of elementary programming
skills
Jens Bennedsen a & Michael E. Caspersen b
a Aarhus University School of Engineering, Finlandsgade 22,
DK-8200 Aarhus N, Denmark
b Department of Computer Science, Aarhus University, Aabogade
34, DK-8200 Aarhus N, Denmark

Version of record first published: 25 Jun 2012

To cite this article: Jens Bennedsen & Michael E. Caspersen (2012): Persistence of elementary
programming skills, Computer Science Education, 22:2, 81-107

To link to this article: http://dx.doi.org/10.1080/08993408.2012.692911

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/ncse20
http://dx.doi.org/10.1080/08993408.2012.692911
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Persistence of elementary programming skills

Jens Bennedsena* and Michael E. Caspersenb

aAarhus University School of Engineering, Finlandsgade 22, DK-8200 Aarhus N, Denmark;
bDepartment of Computer Science, Aarhus University, Aabogade 34, DK-8200 Aarhus N,
Denmark

(Received 30 April 2012; final version received 8 May 2012)

Programming is recognised as one of seven grand challenges in
computing education and attracts much attention in computing
education research. Most research in the area concerns teaching
methods, educational technology and student understanding/miscon-
ceptions. Typically, evaluation of learning outcome takes place during
or immediately following the educational activity. In this research, we
conduct a qualitative investigation of sustainability of programming
competence by studying the effect of recalling programming
competence long time after the educational activity has taken place.
Our population consists of 10 students who have taken an
introductory object-oriented programming course 3, 15 or 27 months
prior to our study. None of the students have been exposed to
programming in the intervening period. As expected, our research
shows that syntactical issues in general hinder immediate program-
ming productivity, but more interestingly it also indicate that a tiny
retraining activity and simple guidelines is enough to recall program-
ming competence and overcome syntactical issues.

Keywords: CS1; object-oriented programming; remembering

1. Introduction

There is a long-lasting and intense interest in programming education
development and research; however, most of the research concerns
teaching methods, educational technology and student understanding/
misconceptions. Very little, if any, research has investigated the long-term
effect of programming education.

There is plenty of research in introductory programming education,
but in general this research focuses on student performance or behaviour
based on data collected during or immediately after the course with a
focus on e.g. learning outcome, learning obstacles, misconceptions and
indicators of success. We are interested in the persistence of programming

*Corresponding author. Email: jbb@iha.dk

Computer Science Education

Vol. 22, No. 2, June 2012, 81–107

ISSN 0899-3408 print/ISSN 1744-5175 online

� 2012 Taylor & Francis

http://dx.doi.org/10.1080/08993408.2012.692911

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

skills, i.e. how well students can remember skills once learnt and not
practiced for some time.

The main forums for programming education development and
research are the annual American-based conference on computer science
education (Technical Symposium on Computer Science Education,
SIGCSE) and its European counterpart, Innovation and Technology in
Computer Science Education (ITiCSE). SIGCSE was held for the 43rd
time in 2012, and ITiCSE will be held for the 17th time in 2012. Most of the
publications within the field of computer science education research are
‘‘practitioner reports’’ (Carbone & Kaasbll, 1998; Fincher & Petre, 2004;
Holmboe, 2005), but a current change is marked by more research-based
publications. ACM is hosting a conference aimed specifically at Computer
Science Education Research (International Computing Education Re-
search Workshop, ICER), to be held for the eighth time in 2012 as well as
the Baltic conference series on computer science education (Koli Calling) to
be held for the 12th time in 2012.

In the late sixties and early seventies, a special interest in programming
as a domain to study cognition emerged. Many consider the book, ‘‘The
Psychology of Computer Programming’’, by Gerald M. Weinberg in
1971, to be the first book within the field (it was republished in 1998 in a
silver anniversary edition [Weinberg, 1998]). In the books’ preface he
writes, ‘‘This book has only one major purpose to trigger the beginning of
a new field of study: computer programming as a human activity’’ (p. vii).
In the seventies, programming cognition became an active field with a
focus on how expert programmers differ from novices.

Teaching methods, materials and educational technology (see e.g.
Kumar 2004; Levy, Ben-Ari, & Uronen 2003;Malmi, et al. 2004) have been
developed with the aim of improving students learning of computer science
and especially programming. Many innovations have their out-spring in
academia andmany have a double purpose: technical as well as educational
research. Studies that evaluate educational technology (see e.g. Jain et al.,
2005; Levy et al., 2003; Stasko, Badre, & Lewis, 1993), studies that evaluate
the usefulness of the competences learnt by the students when they enter
their first job (Begel & Simon, 2008) as well as studies in what students find
most problematic ((Butler & Morgan, 2007; Milne & Rowe, 2002; Schulte
& Bennedsen, 2006) are examples of such studies). Some of these
innovations have been systematically evaluated for their impact, but in
general the measurement of success is defined by how well the students
perform at the final exam or at tests during the course (this is naturally not
true with the studies about the usefulness of competences for students in
their first job). Evaluating the impact immediately after the course is of
course both interesting and relevant, but in general the goals of our
teaching are not only that the students perform well at the final exam, but
that the students achieve relevant and lasting programming competences.

82 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

Computing competences are becoming relevant in many fields;
consequently, many students who will not major in computer science
will be required to take an introductory computing course (Guzdial &
Forte, 2005). There are furthermore a growing number of study-programs
that combines computer science with something else, e.g. business, media
and healthcare. Many introductory computing courses have program-
ming as a core activity and learning goal, and for good reasons since
programmability is the defining characteristic of the (digital) computer.
This is also echoed in the ACM/IEEE curriculum recommendations the
programming-first model is likely to remain dominant for the foreseeable
future (p. 24). Currently, a revision and enlargement of the curriculum
recommendations is under way, broadening the scope from traditional
computer science to the broader field of computing (Shackelford et al.,
2006), from Information Systems (Gorgone et al., 2002) to Computer
Engineering (Soldan et al., 2004).In e.g. ‘‘the model curriculum and
guidelines for graduate degree programs in information systems’’
(Gorgone, Gray, Stohr, Valacich, & Wigand, 2006), it is noted that
Students entering the MSIS program need the content of the following
courses . . . programming (p. 138).

We forget things. The cognitive structures that store facts and schemes
typically become less accessible over time, and forgetting is more likely to
take place when memory elements are not accessed and used (Bjork,
1988). By fitting data from several experiments in cognitive psychology,
Woodworth (1938) created the so-called forgetting curve, see Figure 1.
Accordingly, it should be expected that students do not have the same
competences say one year after an exam as they had right after the exam.

In this research, we are particularly interested in studying the
persistence of elementary programming skills and competencies achieved
some time ago and that have not been applied in the meantime. Computer
science (CS) majors regularly practice programming; consequently, our

Figure 1. Classic shape of the forgetting curve (Woodworth, 1938).

Computer Science Education 83

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

research focuses on non-CS majors. Our subjects have gained their
programming competences in an introductory object-oriented and model-
based programming course. We have conducted a qualitative investiga-
tion of sustainability of programming competence by studying the effect
of recalling programming competence long time after the educational
activity has taken place. Our population consists of 10 students who have
taken an introductory object-oriented programming course 3, 15 or 27
months prior to our test. None of the students, who are majors in bio-
technology, have been exposed to programming in the intervening period.

The remaining part of the article is organised as follows: Section 2
describes related work primarily in cognitive psychology. In Section 3, we
describe the instructional design of the introductory programming course.
Section 4 presents our hypotheses and research questions, and Section 5
presents our research design. In Section 6 we describe and analyse our
observations. Potential future work is described in Section 7, and Section
8 is the conclusion.

2. Related work

When practicing programming, many different elements are in play;
consequently, many areas are related to maintaining programming skills
or, as the other side of the coin, forgetting how to program. For example,
Kim and Lerch (1997) view programming as search in three problem
spaces: rule, instance and representation, and Caspersen and Kolling
(2009) view programming as navigation in a three-dimensional space of
refinement, extension and restructuring. This section focuses on two
related areas: work in the area of human memory and work in the area of
remembering programming competences.

2.1. Human memory

Human memory is fallible. The fact that people gradually forget was first
documented by Ebbinghaus (1885a) in a study where he first tried to learn
nonsense syllables and then tried to remember as much as possible at
various delays after the learning. His conclusion was that there was a rapid
drop-off in retention in the beginning and then a more gradual drop-off
later. As he wrote: One hour after the end of the learning, the forgetting
had already progressed so far that one half the amount of the original
work had to be expended before the series could be reproduced again; after
8 hours the work to be made up amounted to two thirds of the first effort.
Gradually, however, the process became slower so that even for rather
long periods the additional loss could be ascertained only with difficulty.
After 24 hours about one third was always remembered; after 6 days about
one fourth, and after a whole month fully one fifth of the first work

84 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

persisted in effect (Section 29, [Ebbinghaus, 1885b]). Ebbinghaus found
that a complex logarithmic function described his data. Later, it has been
shown (Wixted & Ebbesen, 1997) that a power function y ¼ a tb better
describes the relation between time and remembering. The values
of a and b rely upon the actual person and the ‘‘thing’’ to remember.
The findings of Ebbinghaus – that forgetting occurs rapidly at first and
then slows down – have been confirmed by later studies in laboratories
(Wickelgren, 1972). There are some conflicting evidence about whether
forgetting occurs at all in very long-tern memory (Bahrick, 1984; Bahrick,
Bahrick, & Wittlinger, 1975; Squire, 1999) – very long-term meaning more
than 10 years. In this study we focus on long-term memory only.

Memory links the past with the present. Tulving (1985) describes two
different forms of recognition: remember and know. Gardiner and Java
(1991) describe it this way: Recognition can be accompanied by either
conscious recollection of some specific experience or feelings of familiarity
without any recollective experience. Recognition memory with and
without recollective experience can be measured by ‘‘remember’’ and
‘‘know’’ responses. A ‘‘remember’’ response indicates that seeing the
word in the test list brings back to mind some specific recollection of what
was experienced when the word appeared in the study list. A ‘‘know’’
response indicates that seeing the word in the test list brings to mind
feelings of familiarity, without any recollective experience. (p. 617).
Recalling programming competence is expected to be a ‘‘remember’’
experience. Quite a few independent variables have been found to
influence ‘‘remember’’ responses but not ‘‘know’’ responses among others
the number of rehearsals (Macken & Hampson, 1991). However, it has
been shown that rate of forgetting is not influenced by whether it is
measured for easy or difficult items (Slamecka & McElree, 1983).

Models of the human cognitive architecture recognise two memory
components: working memory and long-term memory (Newell, Rosen-
bloom, & Laird, 1989) (Figure 2). All human learning and activities rely
on these two components and the partnership they share. As its name
implies, working memory is the active partner (as you read this and think
about its relevance to the paper, it is your working memory that does the
processing). While in learning mode, new information from the
environment is processed in working memory to form knowledge
structures called schemas, which are stored in long-term memory.
Schemas are memory structures that permit us to treat a large number
of information elements as if they are a single element. New information
entering working memory must be integrated into pre-existing schemas in
long-term memory. For this to take place, relevant schemas in long-term
memory must be activated and decoded into working memory, where
integration takes place. The result is an encoding of extended schemas
stored in long-term memory. Learning nonsense syllables will not be

Computer Science Education 85

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

integrated into the long term memory, but forgetting also happens for
schemas in the long-term memory (Anderson, Bjork, & Bjork, 1994).

Apart from an interest in forgetting, Ebbinghaus was also interested in
the effect of repeated learning. He found that the relation is quite similar
to that described in Chapter VI (the relation between time and forgetting)
as existing between the surety of the series and the number of its
repetitions (Section 31, [Ebbinghaus, 1885b]).

Re-learning affects forgetting. As Schacter (1999) notices it is known,
for instance, that retrieving and rehearsing experiences play an important
role in determining whether those experiences will be remembered or
forgotten (p. 184). The current memory model is actually more complex
than a simple correlation between recall and remembering. Loftus (1980)
has found four major reasons why people forget: retrieval failure (memory
traces decay over time), interference (memory may compete and interfere
with other memory), failure to store (e.g. details may be filtered out) and
motivated forgetting (we want to forget e.g. traumatic things). As
Anderson et al. (1994) notice, a striking implication of current memory
theory is that the very act of remembering may cause forgetting. It is not
that the remembered item itself becomes more susceptible to forgetting; in
fact, recalling an item increases the likelihood that it will be recallable again
at a later time. Rather, it is other items – items associated to the same cue or
cues guiding retrieval – that may be put in greater jeopardy of being
forgotten. (p. 1063). According to Anderson et al. (1994), the reason for
this is three assumptions on how the memory works:

(1) The competition assumption: Memories associated to a common
cue compete for access to conscious recall when that cue is
presented,

Figure 2. A model of the human cognitive architecture.

86 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

(2) Strength dependence assumption: A cued recall of a memory will
decrease as a function of increases in the strength of its
competitors,

(3) Retrieval-based learning assumption: Recall of a memory enhances
subsequent recall of that memory.

Based on the knowledge of forgetting, several studies have been made in
order to evaluate the effect of students’ breaks (Cooper, Valentine,
Charlton, & Melson, 2003). We think that most teachers know that after a
long summer vacation, it is much harder for students to e.g. program again.
In general, there seems to be an impact of a calendar model with many
small breaks as opposed to one long summer break since students tend to
perform better on tests with many small breaks rather than one large break.
The effect of forgetting was notable particularly with respect to math facts
and spelling. Findings in cognitive psychology suggest that without
practise, facts and procedural skills are most susceptible to forgetting
(Cooper & Sweller, 1987). The categories of facts and procedural skills
most likely encompass the idiosyncrasy of programming language syntax
and programming skills which is the focus of our research.

2.2. Learning programming

We are not aware of research in programming education similar to the
one reported here where we investigate the persistence of elementary
programming skills, i.e. how well students can remember or recall
programming skills learnt some time ago and not practiced in the
meantime.

There is a lot of empirical research in introductory programming
education, but in general this research focuses on learning outcome
measured during the course or immediately after the course has finished
with a focus on e.g. learning outcome, learning obstacles, misconceptions
and indicators of success. In particular, a substantial amount of research
has been conducted to identify general variables that predict the success
of students aiming for a university degree within computer science –
especially focusing at predicting the success of learning programming.
Bennedsen (2008) presents en extensive list of such studies.

In the sixties, a lot of work on creating and validating psychological
test to select programmers were performed. Much of the work of the
Special Interest Group in Computer Personnel Research (SIGCPR) was
about psychological tests for the selection of computing staff. Back then
there were not many people educated in the field, but the industry had a
huge demand for manpower. In 1966, the number of programmers and
system analysts ranged from 170,000 to 200,000; and the number was
expected to rise to 400,000 in 1970 (Dickmann & Lockwood, 1966).

Computer Science Education 87

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

Simpson (1973) published a bibliography in 1973 containing 152
publications describing tests for programming ability.

In conclusion, studies of the long-term effects of learning how to
program are very rare. In general, the empirical research in the area of
computer science education research on introductory programming
focuses on the effect obtained immediately after a programming course.

3. Teaching programming

The purpose of this section is to give a description of the philosophy,
beliefs, values and perspectives behind the programming course through
which our subjects have learned their programming skills. Globally, there
is a lot of variation in introductory programming courses, and in
particular in the philosophy, beliefs, values and, perspectives of people
teaching these courses. If we take the vast majority of textbooks as
indicators of typical introductory programming courses, the course in
play is atypical. In order to appreciate our research and enable
replication, we provide a thorough description of the course and its
philosophy. We start with a description of the variation in approaches to
introductory programming courses; following this, we sketch a model-
based approach to teaching programming; we conclude the section with
specific information about the programming course in play.

3.1. Variation in approaches to teaching programming

Many approaches to introductory programming education have been
proposed including a procedures early approach (Pattis, 1993), a top-
down approach (Hilburn, 1993; Reek, 1995), a graphics approach
(Matzko & Davis, 2006). Even within introductory object-oriented
programming, many different approaches exist: objects early (Alphonce
& Ventura, 2002), interfaces early (Schmolitzky, 2004), GUIs early (Wolz
& Koffman, 2000), concurrency early (Reges, 2000), events early (Stein,
1998), components early (Howe, Thornton, & Weide, 2004), etc.

All of these articles about introductory programming education
describe different (groups of) people’s approaches. Despite a common
curriculum (Engel & Roberts, 2001), many different interpretations of the
curriculum exist. This could be the reason why so many different
approaches to teaching programming coexist and are promoted as being
the best. The authors argue that a certain approach is better than others
based on the (often implicit) assumption that certain learning outcomes
should be promoted.

To give a more thorough understanding of the concrete expected
programming competences, in the following subsections we will describe
the philosophy, beliefs, values and perspectives of the introductory object-
oriented programming course taken by the students in this research.

88 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

3.2. A model-based approach to teaching programming

Knudsen and Madsen (1988) describe three perspectives on the role of a
programming language:

(1) Instructing the computer: The programming language is viewed as a
high-level machine language. The focus is on aspects of program
execution such as storage layout, control flow and persistence. In
the following, we refer to this perspective as coding.

(2) Managing the program description: The programming language is
used for an overview and understanding of the entire program.
The focus is on aspects such as visibility, encapsulation,
modularity and separate compilation.

(3) Conceptual modelling: The programming language is used for
expressing concepts and structures. The focus is on constructs for
describing concepts and phenomena.

When designing a programming course, one must balance the three
perspectives. In a model-based programming course, by definition,
conceptual modelling plays the most important role. The progression of
the course in play is defined not by the syntactical structure of the
programming language, as is usually the case (Robins, Rountree, &
Rountree, 2003), but by the complexity of specification models, i.e. class
models and (informal) functional specifications of methods. Early in the
course, examples, exercises and assignments address programming tasks
described by simple specification models (one class only or two classes with
a simple relationship and simple functional specifications); later in the
course, the programming activities are defined by more complex
specification models (more classes with more advanced relations and
more complex functional specifications).

We adopt an incremental approach to programming education in
which novices are provided with worked examples (Sweller & Cooper,
1985) and initially do very simple tasks and then gradually do more and
more complex tasks, including design-in-the-small by adding new classes
and methods to an already existing design.

In particular, we emphasise algorithmic patterns as one of the key
concepts. Like design patterns (Gamma, Helm, Johnson, & Vlissides,
1995), algorithmic patterns describe solutions to common problems, not at
the software design level but at the algorithmic level of programming.
Sweeping through a data set is a standard algorithmic pattern, so is
searching, divide-and-conquer and backtracking to name a few (Sedgewick
& Schidlowsky, 1998).

We emphasise our pattern-oriented instruction because we believe it
supports long-term learning and thus has implications for the present
research.

Computer Science Education 89

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

In a model-based approach, algorithmic/procedural aspects and
structural/organisational aspects of object-oriented programming go
nicely hand-in-hand, and we emphasise both aspects through patterns.
For example, the algorithmic/procedural aspect of iterating through a set
or list is partially captured by two algorithmic patterns, findOne and
findAll, and the structural/organisational aspect of zero-to-many
relations between classes/objects is captured in the elementary design
pattern *-Association.

As mentioned, these aspects go nicely hand-in-hand. A *-Associa-
tion in a class model, implemented by a set or list, invite methods with a
select-like functionality like findOne and findAll to compute associated
objects satisfying a certain predicate. For example, for an Account-
Transaction association, it could be relevant to find all transactions
within a certain timeframe or all transactions of at least a certain amount.
In the case of a Playlist-Track association, it could be all tracks with a
certain artist, the most popular track, or all tracks of a certain genre.

Listing 1 shows the two algorithmic patterns for finding one or all
associated objects satisfying a certain criteria of a *-Association.

Through several similar examples (same structure but different cover
story), we urge the students to inductively identify algorithmic patterns
for similar standard problems; occasionally, we deductively provide a
pattern up-front and ask the student to apply the pattern to a number of
similar problems. The choice of approach (inductive or deductive)
depends on the audience and the situation.

Listing 1 Patterns for implementing findOne and findAll

class B {... }

class A {
...
private List 5 B 4 bs;
public B findOneX() {
B res ¼ bs.get(0);
for (B b: bs) {

if (/*b is a better X than res*/) {
res ¼ b;

} }
return res;

}
public List 5 B 4 findAllX() {
List 5 B 4 res ¼ new ArrayList 5 B 4 ();
for (B b: bs) {

if (/*b satisfies criteria X*/) {

90 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

res.add(b);
} }
return res;

}
...

}
In Experiment 1 (pre-test) in the appendix, method largestFile is

an instance of findOne and filesOwnedBy is an instance of findAll. In
Experiment 2 (post-test), method mostExpensive is also an instance of
findOne, but there is no strict instance of findAll; instead, method
totalValueOfCars requires a simple sweep of the dealer’s list of cars.

Worked examples that the students complete before they embark on
similar problems, and faded guidance help focus on the essential aspects
of a programming task, and the specific details of the programming
language becomes means to an end instead of a goal in itself.

For a more detailed description of a model-based programming course
design, (Bennedsen, 2008; Bennedsen & Caspersen, 2004, 2008; Casper-
sen, 2007; Caspersen & Bennedsen, 2007). Caspersen and Bennedsen
(2007) discuss and argue for the design from a learning theoretic
perspective. A more elaborate and varied set of reflections on the teaching
of programming in general and object-oriented programming in
particular is available in Bennedsen, Caspersen, and Kölling (2008).

3.3. Specifics about the programming course in play

In this section, we describe the programming course taken by the students
in this research. It is a model-based programming course which spans the
first half of CS1 at Aarhus University. The course runs for seven weeks,
and after the course there is a practical lab examination with a binary
pass/fail grading. The grading is based solely upon the behaviour in and
result of the final examination; acceptable performance in weekly
mandatory assignments during the course is a prerequisite for the final
exam but does not count as part of the grading. For a thorough
description of how we measure the students’ programming competences,
see Bennedsen and Caspersen (2007).

The official intended learning outcomes (ILOs) for the course is
phrased as follows: After the course, the students must be able to apply
fundamental constructs of a common programming language, identify
and explain the architecture of simple programs, identify and explain the
semantics of simple specification models, implement simple specification
models in a common programming language, and apply standard classes
for implementation tasks.

There are approximately 400 students per year from a variety of
study programmes, e.g. bio-technology, chemistry, computer science,

Computer Science Education 91

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

IT, mathematics, geology, nano-science, economy and multimedia.
Thirty to forty per cent of the students are majors in computer science;
of course, they continue with many more programming or program-
ming-related courses. For many of the remaining students, this is the
only mandatory programming course in their curriculum, but some
choose follow-up courses as electives and some do have special follow-
up courses related to their field (e.g. multimedia programming or
scientific computing).

The students are grouped in classes of approximately 20 students;
typically there are 20 classes per year. Each class has its own teaching
assistant (TA) who is typically a PhD student in computer science.

Table 1 gives an overview of the phases and content of the course.
After seven weeks, the students are able to implement simple class

models with 4–5 classes connected by the standard relations of
aggregation (composition) and association. A majority of the students
are able to implement findOne functionality by letting the associated class
(B) implement the interface Comparable; with a suitable implementa-
tion of Comparable, the body of method findOne can be implemented
as a simple call of the min or max method of class Collections.

In the last few weeks before the exam, the students solve a great deal of
problems similar to the one in the Appendix. For the final exam, the
students must be able to solve a similar assignment in 30 min. Three
weeks before the exam, it takes an average student a couple of hours to
solve such a problem, and they think they will never be able to pass the
exam (and they complain about the ‘‘stupid’’ 30-min constraint); but they
will (the failure rate is approximately 10%).

There is a good reason for the 30-min requirement. It forces the
students to practice, and practice makes them learn the routines and the
basic craftsmanship of programming, and that is the whole purpose. The
power law of practice (Newell, Rosenbloom, & Anderson, 1981) tells us
that, depending on the degree of learning, it takes only a certain amount
of practice (trials) to get below the 30-min time limit, but the practice
reinforces procedural solve-this-kind-of-problem-schemas in long-term

Table 1. Course phases.

Content

Getting started: Overview of fundamental concepts. Learning the IDE and other tools.
Learning the basics: Class, object, state, behaviour, control structures.
Conceptual framework and coding patterns: Control structures, data structures (

collections), class relationship, patterns for implementing structure (class relationship)
Programming method: Stepwise improvement, schemes for implementing functionality.
Subject specific assignment: Practise on harder problems.
Practise: Achieve routine in solving standard tasks.

92 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

memory and thus reinforces learning. It is our hypothesis that this will
help the students to maintain their basic programming skills for many
years.

4. Research questions

As described in Section 2, we forget things, and forgetting is more likely
to take place when elements in long-term memory are not accessed and
used. Programming fluency involves a lot of specific skills related to the
programming language (syntax, semantics and pragmatics), the devel-
opment environment (editor, compiler, interpretation of error messages
and debugging), use of API, etc. The first category of skills, which we
denote concrete programming competences, implies that programmers
possess a great deal of fingertip knowledge about many specific,
technical details and is therefore particularly vulnerable with respect to
being forgotten when not practised and applied. Another category of
programming skills and competences relate to problem solving and
application of patterns to solve recurring (types of) problems; we
denote this abstract programming competences. The examination form
ensures that these programming skills and competences have been
present, but how long and how well do they last, and how easy is it to
recall them? Our two hypotheses, which form the basis for this research,
are:

(1) H1 (forgetting): The students have forgotten the concrete program-
ming competences quickly after they have passed the course.

(2) H2 (recalling): It does not take much effort for the students to recall
the concrete as well as more abstract programming competences.

The two hypotheses are operationalised into the following research
questions (H1 into RQ1 and H2 into RQ2.1 and RQ2.2):

(1) RQ1: To which extend have the students forgotten their concrete
programming competences?

(2) RQ2.1: Can the students with a limited effort recall their
programming competences?

(3) RQ2.2: What are the challenges for recalling once learnt skills and
competences?

5. Research design

The description of the research design is broken down into four parts: we
describe the candidate participants, the way we evaluate programming
competence, the way we facilitate the students in rehearsing their

Computer Science Education 93

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

programming competence and, finally, concrete details about the
organisation of the experiment and our data collection.

5.1. Candidate participants

From the general cognitive theory, we expect that the students’
programming competences are forgotten if not practised and applied.
Thus, in order to test our hypotheses and answer our research questions,
we need to identify a group of students who have not programmed since
they passed the introductory programming course. This naturally rules
out computer science students. As described in the introduction, many
other students take programming classes, but this is not the case for
students majoring in bio-technology.

Students from bio-technology take the introductory programming
course in the third quarter of the first year. They have no other
mandatory programming courses, and they do not practise programming
as part of their studies. These students fulfil the overall requirement (they
have not been programming for X months) and they are a group that can
be addressed, since most of them still follow the same study program.
There are currently 45 students in the bachelor program of bio-
technology (14 in the first year, 17 in the second year and 14 in the
third year). This makes it difficult to do quantitative analyses (the number
of students is too small in each group). Consequently, we have designed
the research not with the focus of giving general, generalisable answers
but rather as providing new insight and pointers to factors that might be
interesting to investigate further.

5.2. Evaluation of programming competences

Comparing studies done in different courses are difficult. To properly
evaluate the long-time learning effect of a programming course, we must
take as starting point the ILOs of the course in play. Whether the ILO
focuses on special features of the programming language, the process of
program development, problem decomposition or something else, has an
impact on what programming competences the subjects need to have
remembrance of. The concrete ILOs of the course the subjects had taken
were described in Section 3.3.

A key question is how we can evaluate the students programming
competences? The exam of the course evaluates the learning goals of the
course and consequently the programming competences the students
should possess. We evaluate the students using two programming tests
similar to the one used in the final exam of the introductory programming
course. In Bennedsen and Caspersen (2007), we argue that the exam

94 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

actually measures the goals of the course. The tests can be seen in the
appendix.

5.3. Rehearsing programming competences

The next question is what ‘‘limited effort’’ means (see RQ2.1)? Shall we try
to recall the students’ programming competences through practise or
through a general presentation of key concepts, techniques and examples?
And shall we provide some kind of assistance to recall specific
programming competences during the post-test (e.g. syntax)?

Ideally we would like to ‘‘measure’’ the learning effort it takes a given
student to be able to solve the task in the pre- and post-test, but in
practice this is impossible. As a compromise, we offer the students an
overview of the central programming language constructs (basic
statements, control structures, method, attribute, class, etc.) and central
concepts such as association (one-to-many) and collections and how these
are realised in the programming language (Java). Furthermore, we give
the students one of two kinds of help when solving the post-test. In the
final focus group interview, we specifically address how the learning aids
have helped the students.

5.4. Concrete experiment design

We invited all bio-technology students from the first, second and third
year to participate in the experiment (45 in total). Twelve responded
positively to our invitation, and 10 actually participated in the
experiment. The students were not paid (apart from a dinner at the
end), nor did they get course-credit for the experiment. The students had
the characteristics described in Table 2.

We observed the students performing programming with a focus on
the problems they encountered as they went along. We did this twice: At a
pre-test before the students got a chance to brush-up their programming
competences, and at a post-test after the students had received the brush-
up. Finally, we interviewed the students in a semi-structured focus group
interview.

Table 2. The students participating in the experiment.

Year
Months since

programming course Male Female Programming since course

2007 27 1 0 Course using MathLab
2008 15 0 4 None
2009 3 2 3 None

Computer Science Education 95

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

The experiment was conducted on a late afternoon in a computer-lab
(the same that was used for the lab-sessions during the course) and lasted
3 h. The agenda for the experiment was as follows:

(1) Welcome and introduction
(2) Short repetition of use of the development environment (BlueJ

[Kölling, Quig, Patterson, & Rosenberg, 2003])
(3) Pre-test
(4) Brush-up of programming competences
(5) Post-test
(6) Focus group interview

The welcome and introduction motivated the study and gave a general
overview of the content of the afternoon. This part took 15 min.

The repetition of the development environment helped the students to
remember how the interactive development environment (IDE) was
designed and how to edit and compile programs. This was done via a few
exercises the students had to solve – exercises from the textbook used when
the students took the course (Barnes & Kolling, 2006). This was done in
order to have programming in focus, not the tool used for programming.
The exercises included a small amount of actual programming (the students
typed in some code that was provided, they did not develop the solution
themselves). The students had therefore seen some Java code just before the
pre-test. This part took 15–20 min (some students finished before others).

The pre-test was a standard assignment from a final exam. Four
researchers observed the students (2–3 students per researcher). When the
students got stuck, we noticed the problem and evaluated how the
students tried to solve the problem. If the students had been stuck for a
long period of time, we helped the students to move on and noted this
help. The test lasted 30 min; same duration as the ordinary exam.

The brush-up of programming competences was done using some
general slides from the introductory programming course. The slides
describe general concepts (object, class, attribute, method, constructor,
parameter, type, statement, selection, iteration, association and collec-
tion) and how these look in Java. The students could ask questions and
discuss during the brush-up session. Nearly all of the students’ questions
were about specific details in Java. The students did not do practical
programming during the brush-up session. This part of the experiment
lasted 1 h.

Also, the post-test was a standard assignment from a final exam. In
order to evaluate different aids, we divided the students into two groups:
One group received a model solution for the pre-test, the other group
received a general description of how to implement classes, associations
and two algorithmic patterns (that typically occur in exam assignments):
(1) in a collection of objects, find one that matches a given criteria, and (2)

96 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

in a collection of objects, find all that matches a given criteria. The first
help was very concrete; the second incorporated the idea of pattern-
oriented instruction (Muller, Ginat, & Haberman, 2007), which was
emphasised in the ordinary course. As for the pre-test, four researchers
observed the students and noted their difficulties. The post-test was also
time-boxed to 30 min.

The focus group interview lasted 35 min and focused on the students’
difficulties, the difference between concrete programming competences
and general competences, the effect of the intermediate learning task (the
brush-up of programming competences), the influence of the aids
provided, and general comments.

6. Observations and analysis

This section describes and analyses the observations made during the
experiment and the final focus group interview in order to answer the two
(three) research questions.

6.1. Forgetting

In this subsection, we will look at RQ1.
As expected, the concrete syntax was a major problem for almost all of

the students. As one of the students noticed in the interview: You quickly
forget when to type a parenthesis or a semicolon – you can remember that
it is important that they are put in the right place, but where that is. . ..
Another student expressed it this way: I had many problems in the first
test. I could not remember how to write it – the class and the other stuff –
I could remember that this class was a class and you can create objects
from it, but in the code, I could not remember what to write and how to
call. I could remember that you had to return something. . . but how it
should be written and worked, I had totally forgotten.

There was a difference between the students who took the course three
months ago and the other students. All of the students had problems with
the specific syntax, but the ‘‘younger’’ students (measured in time since
they had the introductory course) had significantly less problems than the
‘‘older’’ students as can be seen from Table 3. One of the students
(number 1) would actually have passed the test if it had been a real exam.

If we look more closely at the problems many students encountered in
the pre-test, they include the following:

(1) Attributes: Many declared the attributes in the constructor and
found it very difficult to initialise them.

(2) Parameters: Many found it difficult to declare parameters. It
seemed like they had the idea of passing information through
parameters but the concrete syntax was a problem.

Computer Science Education 97

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

(3) Screen output vs. return value: Many implemented the toString()
method using a System.out.println(...), and could not
understand the error ‘‘missing return statement’’.

(4) Programming process: Many students gave up on a given question
and left it unsolved even though it was required to solve the next
question.

In general, we conclude that the students had forgotten their specific
programming competences. Only one student (who took the course three
months ago) could solve more than very basic programming tasks.

6.2. Learning

In this subsection, we will look at RQ2.1 and RQ2.2.
After the students had refreshed their programming competences, they

performed significantly better as can be seen by comparing the two

Table 3. Each student’s performance in the initial test.

Month since
programming course

Last completed
exercise Problems

3 8 Did extremely well. Used
compareTo instead of equals
for checking if strings are equal.

3 6 Many problems with syntax like
forgetting a method name.

3 5 Many syntactical problems.
3 None Declared attributes in the

constructor.
15 None Methods without a signature.

Confused about the value of a
name-attribute and a reference to
the given object.

15 None Parameters for the values of the
attributes in the toString()
method.

27 None Many syntactical problems. The
toString()method was
implemented by returning a string
literal instead of values of
variables.

3 4 Did fairly well. Wrote statements
directly in the class without a
surrounding method, but worked
it out by himself.

15 3 Called a non-existing method
(gettoString()).

15 None Declared an attribute called
toString. Declared attributes in
the constructor.

98 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

rightmost columns from Tables 3 and 4: All of the students completed a
larger part of the test and the problems they encountered were simpler. If
the post-test had been a real exam, 7 of the 10 students would have passed
it.

The design of this study was to use a qualitative research approach,
where we observed what the students did, what problems they
encountered, and then abstracted these findings. An alternative way to
address the research question (RQ2.1) could be to statistically check if the
students performed better after the intervention. Figure 3 plots the
students’ number of completed exercises in the pre- and post-test. If we
analyse the data using linear regression (Montgomery & Peck, 1982), we
can observe that there is a reasonably strong correlation between the
observations (R2 ¼ 0.52), and that the line is well above the diagonal.
This supports the conclusion that the intervention indeed helped the
students recall their programming competences. However, as noted
initially, the number of students in this study was only 10.

In general, we conclude that the students with the help they got (one
hour of lecturing plus help during the test) could recall their programming
competences. Consequently, we conclude that it is possible with a limited
effort for most of the students in this study to recall general as well as
more specific programming competences and skills.

RQ2.2 ‘‘What are the challenges for recalling once learnt skills and
competences?’’ is more difficult to answer. In general, the aid that was

Table 4. Each student’s performance in the second test.

Month since
programming
course Type of help

Last
completed
exercise Problems

3 G 9 None.
3 S 9 Forgot to include statements in {}.
3 G 9 None.
3 G 2 Wrote literals insteadof identifiers in

the parameter list of the
constructor.

15 S 7 None.
15 S 8 None.
27 G 5 Forgot to import java.util.*.
3 S 9 None.
15 S 8 None.
15 G 4 Instead of type-identifier pairs in the

parameter list, she wrote
identifier–identifier pairs where
the first identifier was the attribute
and the second was the parameter.

Note: S referees to a solution of the initial test, G to a general description of how to implement
different structures.

Computer Science Education 99

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

provided helped the students. All of the students who had the model
solution from the pre-test performed well. In fact, they would all have
passed had it been a real exam.

The students used the model solution in different ways. Some students
started out on their own and just used the solution when they encountered
a problem they could not solve by themselves. As one student said: I did
not use it for the first six questions . . . there were something about
ArrayList, how to write it, otherwise it was only in the end where you
have to write a for-loop, I could not remember how to write that. I do
understand the meaning and what it is, but I cannot remember how to
write it. Others used it more systematically: I become a little stubborn
when I get such one [a solution]. I want to do it by myself . . . but I used it
anyhow [for most of the test] because there were many things I could not
remember.

The performance of the students who got the general description was
somewhat more diffuse. In general, they performed significantly better
than in the pre-test, but not all would have passed had it been a real exam.
Some students found it difficult to put the general solution to practice.

In general, the Refreshment of programming competences phase in the
experiment helped the students. As one student said I think it helped me a
lot – the PowerPoint show – because I had completely forgotten all. I
actually think I had forgot that there should be a list if it wasn’t told.

In the Refreshment of programming competences phase, many
students had good and in-depth questions using correct terminology for
programming concepts. We see this as an additional indicator that the
students may have forgotten the syntax but the more conceptual content
and general competences and skills are easier to recall.

Figure 3. Number of completed exercises in the pre- and post-test.

100 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

7. Future work

In this study, only 10 students from one study program participated. It
will be interesting to expand the findings from this research by involving
more students from more study programs. Fortunately, students from
several other study programs who do not receive further programming
instruction, have taken the course.

Programming is being taught in many different ways, and there are
many different ways of phrasing the intended learning outcome of
introductory programming courses. In order to obtain more reliable and
generalisable results, it would be interesting to include more universities
and colleges in the research and thus aim for a multi-institutional (and
multi-national) study. As Simon, Lister, & Fincher (2006) argues, a multi-
national, multi-institutional context, defines a new interface between
computer science education research and computer science education
practice – hopefully bringing them closer together (p. S4E-16).

8. Conclusion

We have conducted a qualitative investigation of sustainability of
programming competence by studying the effect of recalling program-
ming skills and competence learnt some time ago and not practiced in the
meantime.

In the pre-test, all students struggled with syntax issues, but the
younger students (measured in time since they took the introductory
course) had significantly less problems than the older students.

Our qualitative study indicates, not surprisingly, that syntactical issues
in general hinder immediate programming productivity. More interest-
ingly, it also indicates that a tiny retraining activity and simple guidelines
are enough to recall general as well as more specific programming
competences and to overcome syntactical issues.

References

Alphonce, C., & Ventura, P. (2002). Object orientation in CS1-CS2 by design. In ITiCSE
’02: Proceedings of the 7th annual conference on innovation and technology in computer
science education, Aarhus, Denmark (pp. 70–74). New York, NY: ACM Press.

Anderson, M., Bjork, R., & Bjork, E. (1994). Remembering can cause forgetting:
Retrieval dynamics in long-term memory. Journal of Experimental Psychology:
Learning, Memory and Cognition, 20, 1063–1087.

Bahrick, H.P. (1984). Semantic memory content in permastore: Fifty years of memory for
Spanish learned in school. Journal of Experimental Psychology: General, 113, 1–47.

Bahrick, H.P., Bahrick, P., & Wittlinger, R.P. (1975). Fifty years of memories for names
and faces: A cross-sectional approach. Journal of Experimental Psychology: General,
104, 54–75.

Barnes, D.J., & Kolling, M. (2006). Objects first with Java: A practical introduction using
BlueJ (3rd ed.). Essex, UK: Pearson.

Computer Science Education 101

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

Begel, A., & Simon, B. (2008). Struggles of new college graduates in their first software
development job. In Proceedings of the 39th SIGCSE technical symposium
on computer science education, SIGCSE ’08, Portland, OR, USA (pp. 226–230).
New York, NY: ACM.

Bennedsen, J. (2008). Teaching and learning introductory programming – a
model-based approach. Norway: Department of Computer Science, University of
Oslo.

Bennedsen, J., & Caspersen, M. (2004). Teaching object-oriented programming – towards
teaching a systematic programming process. In Eighth workshop on pedagogies and
tools for the teaching and learning of object oriented concepts, Oslo, Norway, June 14,
2004. Affiliated with 18th European Conference on Object-Oriented Programming,
ECOOP 2004, Oslo, Norway.

Bennedsen, J., & Caspersen, M.E. (2007). Assessing process and product – A practical lab
exam for an introductory programming course. ITALICS, Innovation in Teaching and
Learning in Information and Computer Sciences, 6, 183–202.

Bennedsen, J., & Caspersen, M. (2008). Model-driven programming. In J. Bennedsen, M.
Caspersen, & M. Kölling (Eds.), Lecture notes in computer science: Vol. 4821.
Reflections on the teaching of programming: Methods and implementations (pp. 116–
129). Berlin: Springer-Verlag.

Bennedsen, J., Caspersen, M.E., & Kölling, M. (Eds.). (2008). Lecture notes in computer
science: Vol. 4821. Reflections on the teaching of programming, methods and
implementations. Berlin: Springer-Verlag.

Bjork, R. (1988). Retrieval practice and the maintenance of knowledge. In M. Gruneberg,
P. Morris, & R. Sykes (Eds.), Practical aspects of memory: Current research and issues
(Vol. 1, pp. 396–401). Chichester: Academic Press.

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice
programming students studying high level and low feedback concepts. In R.
Atkinson, C. McBeath, S.K.A. Soong, & C. Cheers (Eds.), ICT: Providing
choices for learners and learning. Proceedings Ascilite Singapore 2007 (pp. 99–
107). Retrieved from http://www.ascilite.org.au/conferences/singapore07/procs/
butler.pdf

Carbone, A., & Kaasbll, J.J. (1998). A survey of methods used to evaluate computer
science teaching. In ITiCSE ’98: Proceedings of the 6th Annual Conference on the
Teaching of Computing and the 3rd Annual Conference on Integrating Technology into
Computer Science Education, Dublin City University, Ireland (pp. 41–45). New York,
NY: ACM.

Caspersen, M.E. (2007). Educating novices in the skills of programming. Aarhus
University, Department of Computer Science. Retrieved March 2012, from http://
www.daimi.au.dk/*mec/dissertation/.

Caspersen, M.E., & Bennedsen, J. (2007). Instructional design of a programming course:
A learning theoretic approach. In ICER ’07: Proceedings of the third international
workshop on computing education research, Atlanta, Georgia, USA (pp. 111–122).
New York, NY: ACM.

Caspersen, M.E., & Kolling, M. (2009). STREAM: A first programming process.
Transactions on Computing Education, 9(1), 4:1–4:29.

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation
on mathematical problem-solving transfer. Journal of Educational Psychology, 79,
347–362.

Cooper, H., Valentine, J.C., Charlton, K., & Melson, A. (2003). The effects of modified
school calendars on student achievement and on school and community attitudes.
Review of Educational Research, 73(1), 1–52.

Dickmann, R.A., & Lockwood, J. (1966). Computer personnel research group, 1966
survey of test use in computer personnel selection. In Proceedings of the fourth
SIGCPR conference on computer personnel research, SIGCPR ’66, Los Angeles,
California (pp. 15–25). New York, NY: ACM.

Ebbinghaus, H. (1885a). Über das Gedüchtnis. New York, NY: Teachers College,
Columbia University.

102 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

http://www.daimi.au.dk/~mec/dissertation/
http://www.daimi.au.dk/~mec/dissertation/

Ebbinghaus, H. (1885b). Memory: A contribution to experimental psychology. Retrieved
May 14, 2009, from http://psychclassics.yorku.ca/Ebbinghaus/index.htm. Translated
from German by Henry A. Ruger and Clara E. Bussenius (1913).

Engel, G., & Roberts, E. (2001). Computing curricula 2001 computer science, final report.
Retrieved May 2012, from http://www.acm.org/education/curric_vols/cc2001.pdf.
Technical report. East Lansing, MI: The Joint Task Force on Computing Curricula.

Fincher, S., & Petre, M. (2004). Computer science education research. London: Routledge
Falmer.

Gamma, E., Helm, R., Johnson, R.E., & Vlissides, J. (1995). Design patterns: Elements of
reusable object-oriented software. Reading, MA: Addison-Wesley.

Gardiner, J.M., & Java, R.I. (1991). Forgetting in recognition memory with and without
recollective experience. Memory & Cognition, 6, 617–623.

Gorgone, J.T., Davis, G.B., Valacich, J.S., Topi, H., Feinstein, D.L., & Longenecker,
H.E, Jr. (2002). IS 2002 – Model curriculum and guidelines for undergraduate degree
programs in information systems. Technical report. Retrieved May 2012, from http://
www.acm.org/education/education/curric_vols/is2002.pdf

Gorgone, J.T., Gray, P., Stohr, E.A., Valacich, J.S., & Wigand, R.T. (2006). MSIS 2006:
Model curriculum and guidelines for graduate degree programs in information
systems. SIGCSE Bulletin, 38, 121–196.

Guzdial, M., & Forte, A. (2005). Design process for a non-majors computing course. In
SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium on computer
science education, St. Louis, Missouri (pp. 361–365). New York, NY: ACM.

Hilburn, T.B. (1993). A top-down approach to teaching an introductory computer
science course. SIGCSE Bulletin (Association for Computing Machinery, Special
Interest Group on Computer Science Education), 25(1), 58–62.

Holmboe, C. (2005). Language, and the learning of data modelling. University of Oslo,
Department of Teacher Education and School Development. Retrieved from http://
urn.nb.no/URN:NBN:no-11609

Howe, E., Thornton, M., & Weide, B.W. (2004). Components-first approaches to CS1/
CS2: Principles and practice. In SIGCSE ’04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education, Norfolk, Virginia (pp. 291–295).
New York, NY: ACM Press.

Jain, J., Cross, J.H, I., & Hendrix, D. (2005). Qualitative comparison of systems
facilitating data structure visualization. In ACM-SE 43: Proceedings of the forty-third
annual Southeast regional conference (pp. 309–314). Kennesaw, GA: ACM Press.

Kim, J., & Lerch, F.J. (1997). Why is programming (sometimes) so difficult?
Programming as scientific discovery in multiple problem spaces. Information Systems
Research, 8(1), 22–50.

Knudsen, J.L., & Madsen, O.L. (1988). Teaching object-oriented programming is more
than teaching object-oriented programming languages. In S. Gjessing, & K. Nygaard
(Eds.), ECOOP ’88 European Conference on Object-Oriented Programming, Oslo,
Norway, August 15–17, 1988 (pp. 21–40). Berlin: Springer-Verlag.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its
pedagogy. Computer Science Education, 13, 249–268.

Kumar, A.N. (2004). Using online tutors for learning what do students think? In
Proceedings of the 34th ASEE/IEEE frontiers in education conference, October 20–23,
2004 (pp. T3F–9 – T3F–13). Retrieved from http://fie-conference.org/fie2004/papers/
1217.pdf.

Levy, R.B.B., Ben-Ari, M., & Uronen, P.A. (2003). The Jeliot 2000 program animation
system. Computers & Education, 40(1), 1–15.

Loftus, E. (1980). Memory: Surprising new insights into how we remember and why we
forget. Reading, MA: Addison-Wesley.

Macken, W.J., & Hampson, P. (1991). Integration, elaboration, and recollective
experience. The Irish Journal of Psychology, 14, 270–285.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppl, O., & Silvasti, P. (2004).
Visual algorithm simulation exercise system with automatic assessment: TRAKLA2.
Informatics in Education, 3, 267–288.

Computer Science Education 103

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

http://psychclassics.yorku.ca/Ebbinghaus/index.htm
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/education/curric_vols/is2002.pdf
http://www.acm.org/education/education/curric_vols/is2002.pdf

Matzko, S., & Davis, T.A. (2006). Teaching CS1 with graphics and C. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE conference on innovation and technology in
computer science education, Bologna, Italy (pp. 168–172). New York, NY: ACM Press.

Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming views of
students and tutors. Education and Information Technologies, 7, 55–66.

Montgomery, D.C., & Peck, E.A. (1982). Introduction to linear regression analysis. New
York, NY: John Wiley.

Muller, O., Ginat, D., & Haberman, B. (2007). Pattern-oriented instruction and its
influence on problem decomposition and solution construction. SIGCSE Bulletin, 39,
151–155.

Newell, A., Rosenbloom, P.S., & Anderson, J.R. (1981). Mechanisms of skill acquisition
and the law of practice. In J.R. Anderson (Ed.), Cognitive skills and their acquisition
(pp. 1–55). Hillsdale, NJ: Erlbaum.

Newell, A., Rosenbloom, P.S., & Laird, J.E. (1989). Symbolic architectures for cognition.
In Michael I. Posner (Ed.), Foundations of cognitive science (pp. 93–131). Cambridge,
MA: MIT Press.

Pattis, R.E. (1993). The procedures early approach in CS 1: A heresy. In SIGCSE ’93:
Proceedings of the twenty-fourth SIGCSE technical symposium on computer science
education, Indianapolis, Indiana (pp. 122–126). New York, NY: ACM Press.

Reek, M.M. (1995). A top-down approach to teaching programming. In SIGCSE ’95:
Proceedings of the twenty-sixth SIGCSE technical symposium on computer science
education, Nashville, Tennessee (pp. 6–9). New York, NY: ACM Press.

Reges, S. (2000). Conservatively radical Java in CS1. In SIGCSE ’00: Proceedings of the
thirty-first SIGCSE technical symposium on computer science education, Austin, Texas
(pp. 85–89). New York, NY: ACM Press.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13, 137–172.

Schacter, D. (1999). The seven sins of memory: Insights from psychology and cognitive
neuroscience. American Psychologist, 54, 182–203.

Schmolitzky, A. (2004). ‘‘Objects first, interfaces next’’ or interfaces before inheritance. In
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference on object-
oriented programming systems, languages, and applications, Vancouver, British
Columbia (pp. 64–67). New York, NY: ACM Press.

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory
programming?. In Proceedings of the second international workshop on computing
education research, ICER ’06, Canterbury (pp. 17–28). New York, NY: ACM.

Sedgewick, R., & Schidlowsky, M. (1998). Algorithms in Java, Parts 1–4: Fundamentals,
data structures, sorting, searching (3rd ed.). Boston, MA: Addison-Wesley Longman
Publishing Co.

Shackelford, R., Cross II, J.H., Davies, G., Impagliazzo, J., Kamali, R., LeBlanc, R., . . .
Topi, H. (2006). The Overview Report. Retrieved June 2009, from http://
www.acm.org/education/curric_vols/CC2005-March06Final.pdf

Simon, B., Lister, R., & Fincher, S. (2006). Multi-institutional computer science
educational research: A review of recent studies of novice understanding. In
Proceedings of the 36th Annual Frontiers in Education Conference, October (pp.
SE412–17). Retrieved from http://fie-conference.org/fie2006/papers/1149.pdf

Simpson, D. (1973). Psychological testing in computing staff selection: A bibliography.
ACM SIGCPR Computer Personnel, 4(1–2), 2–5.

Slamecka, N.J., & McElree, B. (1983). Normal forgetting of verbal lists as a function of
their degree of learning. Journal of Experimental Psychology: Learning, Memory &
Cognition, 9, 384–397.

Soldan, D., Hughes, J.L., Impagliazzo, J., McGettrick, A., Nelson, V.P., Srimani, P.K.,
& Theys, M.D. (2004). Computer engineering 2004 – Curriculum guidelines for
undergraduate degree programs in computer engineering. Retrieved from http://
www.acm.org/education/education/curric_vols/CE-Final-Report.pdf

Squire, L. (1999). On the course of forgetting in very long-term memory. Journal of
Experimental Psychology: Learning, Memory & Cognition, 15, 241–245.

104 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist learning? An
empirical study and analysis. In CHI ’93: Proceedings of the INTERACT ’93 and CHI
’93 conference on human factors in computing systems (pp. 61–66). Amsterdam: ACM.

Stein, L.A. (1998). What we swept under the rug: Radically rethinking CS1. Computer
Science Education, 8, 118–129.

Sweller, J., & Cooper, G. (1985). The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 2(1), 59–89.

Tulving, E. (1985). Memory and consciousness. Canadian Psychologist, 25, 1–12.
Weinberg, G.M. (1971). The psychology of computer programming. New York, NY: Van

Nostrand Reinhold.
Weinberg, G.M. (1998). The psychology of computer programming. New York, NY:

Dorset House Publishing.
Wickelgren, W. (1972). Trace resistance and the decay of long-term memory. Journal of

Mathematical Psychology, 9, 418–455.
Wixted, J., & Ebbesen, E. (1997). Genuine power curves in forgetting: A quantitative

analysis of individual subject forgetting functions. Memory and Cognition, 25,
731–739.

Wolz, U., & Koffman, E. (2000). Interactivity in CS1 & CS2: Bringing back the fun stuff
with Java. In CCSC ’00: Proceedings of the fifth Annual Consortium for Computing
Sciences in Colleges CCSC: Northeastern conference, Ramapo College of New Jersey,
Mahwah, New Jersey (pp. 1–3). USA: Consortium for Computing Sciences in
Colleges.

Woodworth, R. (1938). Experimental psychology. New York, NY: Henry Holt.

Computer Science Education 105

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

Appendix A: Pre-test

106 J. Bennedsen and M.E. Caspersen

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

Appendix B: Post-test

Computer Science Education 107

D
ow

nl
oa

de
d

by
 [

St
at

sb
ib

lio
te

ke
t T

id
ss

kr
if

ta
fd

el
in

g]
 a

t 1
4:

28
 0

9
Ju

ly
 2

01
2

