
ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 183

Assessing Process and Product
– A Practical Lab Exam for an Introductory Programming Course1

Jens Bennedsen Michael E. Caspersen

IT University West Department of Computer Science

Fuglsangs Allé 20 University of Aarhus

DK- 8210 Aarhus V, Denmark DK-8200 Aarhus N, Denmark

jbb@it-vest.dk mec@daimi.au.dk

Abstract - The final assessment of a course must reflect its goals and contents. An important goal

of our introductory programming course is that the students learn a systematic approach for the

development of computer programs. Having the programming process a as learning objective

naturally raises the question how to include this in assessments. Traditional assessments (e.g. oral,

written, or multiple choice) are unsuitable to test the programming process.

We describe and evaluate a practical lab examination that assesses the students’ programming

process as well as the developed programs. The evaluation is performed in three ways: by analyzing

the results of four lab examinations (with more than 1100 students), by semi-structured individual

interviews with representatives of the involved persons (students, teaching assistants (TAs), lecturer,

and examiner) and by an experiment to evaluate the impact of the assignment text on the

programming process.

The result of the evaluation is encouraging and indicates the value of alignment and strong conformity

between goal, content and assessment of the introductory programming course.

Keywords: introductory programming, teaching programming, practical lab examination.

1 This paper is an expanded and revised version of a paper presented at Frontiers in Education Conference in 2006
(Bennedsen & Caspersen, 2006).

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 184

1 Introduction
There are many alternative assessment methods. Stiggins (2005) enumerates four main categories:

selected response (multiple choice questions and short answer questions), essay (poster

presentation, written report), performance assessment (case study, practicum, project, and reflective

journal/diary), and personal communication (class presentation, interview, and learning contract). A

typical oral examination is classified as personal communication (interview), and a written examination

is classified as selected response (short answer question). According to Stiggins (2005), each

category has advantages in assessing different learning outcomes. For example, a selected response

assessment task, such as a series of multiple-choice questions, is able to assess all areas of mastery

of knowledge but only some kinds of reasoning.

Multiple choice tests have recently been coming into favour as a useful evaluation tool at the university

level (Brown, 2001; Roberts, 2006; Woodford & Bancroft, 2005), in contrast to the earlier view that

they support only superficial learning (Biggs, 2003). A recent result regarding multiple choice is that

five self-evident axioms are sufficient to determine completely the unique correct scoring strategy for

multiple choice tests where students are allowed to check several boxes to convey partial knowledge

(Frandsen & Schwartzbach, 2006).

Based upon Bloom’s classification of educational objectives (Bloom, Krathwohl, & Masia, 1956), Lister

and Leaney have developed a criterion-referenced grading scheme to cope with diversity among

students in an introductory programming class. In the traditional norm-referencing approach to

grading, all students attempt the same programming tasks, and the attempts are graded “to a curve”.

The danger is that such tasks are aimed at a hypothetical average student. Weaker students can do

few of these tasks and learn little. Meanwhile, these tasks do not stretch the stronger students, so they

too are denied an opportunity to learn: Our contribution has been to bring disparate grading

techniques together, uniting them in a coherent grading philosophy (Lister & Leaney, 2003).

Plagiarism is a major issue in computer science education as exposed by an ITiCSE 2002 working

group (Dick et al., 2002). Several assessment systems incorporate plagiarism detection; Lancaster &

Culwin (2004) provide a comparison of source code plagiarism detection engines. Daly and Horgan

(2005) present a system based on watermarks, allowing them to distinguish supplier and recipient .

Some research has been aimed at understanding whether the assessment is valid, i.e. whether it

represents the kind of knowledge the educator wants it to assess (Fincher & Petre, 2004). An example

of this concerns assessment of early programming competence. With reference to the findings of

McCracken et al. (2001), which shows that many computing students are not able to develop

straightforward programs after the introductory programming sequence, Daly & Waldron (2004) argue

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 185

that normal student assessment should have highlighted this problem; since it did not, normal

assessment of programming ability does not work. The authors examine why current assessment

methods (written exams and programming assignments) are faulty and investigate another method of

assessment: the lab exam. Furthermore, the authors show that this form of assessment is more

accurate, and they explain why accurate assessment is essential in order to encourage students to

develop programming ability.

The final assessment must reflect aims, goals, and contents of a course (Biggs, 2003; Prior & Lister,

2004). John Biggs developed constructive alignment – based on the work of Ralph Tyler (1949) – to

help teachers focus on their development of courses where the learning outcome of students was

higher. In constructive alignment, according to Biggs (2003), we first state the learning outcomes we

intend our students to achieve. The outcome statements contain a learning activity, a verb that

students need to perform to properly achieve the outcome. That verb (e.g. ‘explain’, ‘apply’, ‘reflect’)

then needs to be activated by the teaching and learning activities we give students: lecturing to

them usually does not do that. The assessment tasks should also require students to enact that

same verb. How well they solve those problems is the authentic assessment, not sitting exams

about what we have taught. That verb is what achieves alignment: it is in our intended outcomes, in

the teaching and learning activities, and in the assessment tasks. Traditionally, educational systems

are not aligned. The curriculum is usually a list of topics telling teachers what to ‘cover’, the default

teaching method is the lecture, in which students are told about the topic — they do not have to

enact their understanding

An important goal of our introductory programming course is that the students learn a systematic

approach to the development of computer programs. Learning a systematic approach to

programming implies that the students must gain a clear understanding of the programming process

and the activities that are part of this process. They must also develop the ability to apply these to

develop programs.

Recognizing the importance of programming techniques and the programming process when

designing a programming course implies the need for adoption of a suitable assessment form.

Traditional assessment forms (e.g. oral or written examinations, multiple choice questions) are

unsuitable to test the programming process.

Another equally important argument for assessing the programming process is that the spirit and

style of student assessment defines de facto the curriculum (Rowntree, 1977 p.1). Ramsden makes

a similar observation the type of grading influences the student’s learning approach (Ramsden,

1992).

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 186

The bottom line is that it is essential to apply an evaluation form where the students demonstrate

their practical programming skills as well as their understanding of the fundamental concepts and

theories from the curriculum of the course. Consequently, we need to develop a new type of

assessment suitable to test the programming process as well as the product.

The characteristics of the lab examination described and evaluated in this paper are that it

i. provides a valid and accurate evaluation of the student’s programming capabilities,

ii. evaluates the process as well as the product,

iii. encourages the students to practice programming throughout the course,

iv. can be used to assess 120-140 students per. day, and

v. plagiarism is impossible.

The rest of the paper is structured as follows: Section 2 describes the context of the lab

examination. Section 3 gives a more thorough description of the final lab examination. Section 4

presents and discusses the findings from the evaluation of the lab examination. In section 5 we

discuss related and future work. The conclusions are drawn in section 6.

2 Goals, Content and Assessment
To provide an understanding of the context, this section describes goal, form, and content of the

introductory programming course.

2.1 General Information

Our programming course spans the first half of CS1 at University of Aarhus. The course runs for

seven weeks, and after the course there is a lab examination with a binary pass/fail grading.

The grading is based solely upon the behaviour in and result of the final examination. Acceptable

performance during the course is a prerequisite for the final exam but does not count as part of the

grading.

There are approximately 300 students per year from a variety of study programmes, e.g. computer

science, mathematics, geology, nano science, economy, multimedia. 40% of the students are

majors in computer science, and they are the only group of students that continue with the second

half of CS1. The rest of the students proceed to other programming courses related to their fields

(e.g. multimedia programming, scientific computing) if they proceed with programming at all.

The students are grouped in teams of 18-20 students; typically there are 13-14 teams per year.

Each team has its own teaching assistant (TA) – a PhD or MSc student.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 187

2.2 Goals

The purpose of the course is that students learn the foundation of systematic construction of simple

programs and through this obtain knowledge about the role of conceptual modelling in object-

oriented programming. Furthermore, it is the goal that students become familiar with a modern

programming language, fundamental programming language concepts, and selected class libraries.

After the course the students must be able to explain and use fundamental elements in a modern

programming language, use conceptual modelling in relation to preparing simple object-oriented

programs, implement simple object-oriented models in a modern programming language, and use

selected class libraries. A description can be found at

http://mit.au.dk/da/studier/udbudbeskriv.cfm?udbudid=6047&lan=en&scope=1&parentelem=8647

2.3 Form

The course runs for seven weeks. Every week there are four lecture hours and four lab hours with a

TA. In addition to the scheduled hours, students work approximately seven hours per week in study

groups or on their own.

The four lecture hours per week are used for presentation and discussion of general concepts and

the programming process. The programming process is revealed through live programming in front

of the students in the lecture theatre using computer and projector and through process recordings

(narrated, screen-captured video recordings of program development sessions); see (Bennedsen &

Caspersen, 2005).

Every week (except for the first) there is a mandatory assignment that must be submitted to the TA.

The TA examines the assignments and gives personal as well as collective feedback to the

students. Approval of five out of six weekly assignments is a prerequisite for the final exam but does

not count as part of the grading. The weekly assignments are primarily used to keep the students up

to the mark on the practice of programming.

2.4 Content

The course content is fundamental programming language concepts, object-orientation, and

techniques for systematic construction of simple programs.

• Fundamental programming language concepts: variable, value, type, expression,

object, class, encapsulation, control structure, method/procedure, recursion, type

hierarchies.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 188

• Object-orientation: modelling; class structures (specialization, aggregation and

association); use of selected class libraries (in particular collection libraries), interfaces

and abstract classes.

• Systematic development of small programs: modularization, stepwise

refinement/incremental development, test.

This is a logical listing of the course contents; it is not the order in which the content is covered.

The content is covered using a spiral approach (Bergin, 2006), for further details of the structure

and content of the course see (Bennedsen & Caspersen, 2004; Caspersen & Christensen, 2000).

The programming process we teach our students is called STREAM (stubs, tests, representation,

evaluation, attributes, and methods) (Caspersen & Kölling, 2006). This is a test driven, incremental

process with five steps:

1. Create the class (with method stubs)

2. Create tests

3. Alternative representations

4. Instance fields

5. Method implementation

We teach the students general coding recipes to more or less automatically handle step 1, how to

create a representation evaluation matrix focusing on the estimated effort it takes to implement each

method using a particular object representation and algorithmic patterns (Muller, 2005) to solve the

implementation of the methods.

3 Assessment through a Lab Examination
This section discusses the examination requirements, the organization of the lab examination and

the actual lab examination.

3.1 Conformity between Goals, Content, and Assessment

As mentioned in section 2.2 the goals of the course are that the student must be able to explain and

• use fundamental elements in a modern programming language,

• use conceptual modelling in relation to preparing simple object-oriented programs,

• implement simple object-oriented models in a modern programming language, and

• use selected class libraries.

During the course, as in real life, programs are developed using a standard development

environment running on a computer. An ordinary written exam with pen and paper is an artificial

situation and therefore insufficient and inappropriate to test the student’s ability to develop

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 189

SalesNote

String date
String description
int amount

String toString()

programs. For the same reasons an ordinary oral examination and a multiple choice test would be

inappropriate.

To ensure alignment and maximum conformity between goals, content, and assessment we have

designed a practical examination organized in a lab.

3.2 Organization of the Lab Examination

The examination resembles an ordinary lab session. 25 students are tested concurrently. We

schedule one hour per group of 25 students, but only 30 minutes for the actual lab examination.

The rest of the time is used for administrative activities and as buffer.

Each group of students receives a different assignment consisting of nine small progressive

programming tasks. In principle the assignments are identical (they are all instances of the same

generic assignment), but the students does not know nor realize this. The similarity of the

assignments is important for fairness as well as comparability of the students’ results. The sample

assignment in Figure 1 deals with sales notes and sales persons; other exercises concern luggage

and flights, employees and departments, museums and paintings, etc. Although the concepts

modelled by the classes vary, the assignments have similar structure.

Exam (30 min. lab exam)
1. Create a class SalesNote representing a sales note; the

class SalesNote is specified in the UML diagram on the
right. The three field variables must be initialized in a
constructor (via parameters of suitable types). The method
toString must return a string representation of a sales note,
e.g.

 ”2005-10-24, A4 paper, 237 kr.”

2. Create a Driver class with an exam method. The method must be static, have return type void,
and no parameters.

3. Create two SalesNote objects, via object references sn1 and sn2, in the exam method and print
these using the toString method.

Call one of the supervisors for review of what you have created so far; prepare the
presentation by opening the relevant files and place them next to each other on the desktop.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 190

SalesPerson

String name

void add(SalesNote sn)
void remove(SalesNote sn)
SalesNote poorestSale()
int totalSales()
void printSales()

SalesNote

String date
String description
int amount

String toString()

*

4. Create a new class, SalesPerson, representing a sales person; the class SalesPerson and its
relation to the class SalesNote is specified in the following UML diagram:

5. Program the methods add and remove to respectively add/ remove the SalesNote object sn
to/from the SalesPerson object.

6. Create an object of type SalesPerson in the exam method in the Driver class and associate the
two already created SalesNote objects to the SalesPerson object.

7. Program the method poorestSale. The method must return the SalesNote object representing
the poorest sale (it can be assumed that a sales person has had at least one sale). If more
SalesNote objects have the same minimum value, it does not matter which is returned. Add the
necessary get methods to the SalesNote class.

8. Use the method poorestSale (SalesPerson) and toString (SalesNote) for printing the sales note
representing the sale of poorest value (in the exam method in the Driver class).

Call one of the supervisors for review of what you have created so far; prepare the
presentation by opening the relevant files and place them next to each other on the desktop.

9. Program the method totalSales (SalesPerson). The method must return the sum of all sales for
the sales person concerned. Test the method from the exam method in the Driver class.

10. Program the method printSales. The method must print a list of all sales of a sales person. The
list must be chronologically ordered (sales from the same day must be ordered according to the
value of the sales). Hint: Let the class SalesNote implement the Comparable interface.

 Figure 1: Prototypical assignment

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 191

3.3 Assessment of Product and Process

In the test for completed apprenticeship of traditional crafts, the examiner inspects the apprentice

while they construct their exam product; the quality of the apprentice’s construction process as well

as the quality of the final product counts in the final grading.

Because of similar goals regarding the assessment of process and product, we have adopted a

similar examination form where the lecturer and the external examiner evaluate the programming

process as well as the program produced by each student by inspecting the students during the

examination.

The students’ behaviour as well as the quality of the programs they produce count in the final

grading but not on equal footing. An appropriate and systematic programming process can

compensate for minor flaws and errors in the product and result in a pass mark for the student (as

described above we have a binary grading scheme), and similarly a poor process can be the

determining factor when the product is on the edge. Although we emphasize the programming

process, it is not the case that a nice product will be turned down due to a poor process (which is

unlikely anyway). In order to demonstrate that a student fulfils the goals of the course, the student

must implement at least the association (in Figure 1 this is programming task five and six) and a

method that iterates through the objects (programming task seven and eight). The minor flaws

mentioned above can be minor errors in e.g. the iteration (the student finds the maximum in stead of

the minimum) or a simple syntax error but the overall implementation is acceptable.

To avoid practical problems during start-up and finalization of the lab examination (e.g. login

problems, applying naming conventions, delivery of the exam products), and to ensure that minor

unimportant programming errors, tool problems, etc. do not hinder the student’s problem solving

and programming, five TAs are present during the lab examination to support the students. If the

TAs have doubts about their role (e.g. how much to interact with the students), they consult the

lecturer or external examiner on-the-fly.

To let the students settle down and get started, they are not inspected until they have passed a

checkpoint after the first three programming tasks. The students are instructed to call upon a TA or

the lecturer when they reach the checkpoint to show and demonstrate their solution. The time when

the first three tasks are done is noted. When a student has passed the checkpoint, the lecturer and

external examiner start inspecting the student’s behaviour. The poorest students never reach the

checkpoint and therefore, the inspection time is focused on those students who have a chance of

passing. To allow for efficient inspection, the students are instructed to keep all editor windows open

and tiled on the screen.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 192

From several years of experience, we know that most of the students five to seven minutes after the

first checkpoint are implementing the iteration. Around that time the student is monitored more

closely, and after a short inspection of the students programming process, it is usually possible to

determine the pass grade. This is a very efficient way to know when and in what order to look at the

students’ solutions. This is also a method to ensure that the students have some silence and can

concentrate during the exam.

The elements we look for are among other things:

• Errors: How does the student handle an error? Does the student pay attention to the error

message? Does the student address the error in a systematic way? Does the student use

the debugger in a reasonable way?

• Documentation: Does the student use the documentation when in doubt?

• Programming patterns: Does the student use standard patterns to solve the problems (e.g.

a findOne associated object (Caspersen & Bennedsen, 2007) pattern to solve programming

task 7 above)

• Conceptual model: Does the program structure reflect the UML class model?

• Handling of tools: Does the student handle the programming environment in a reasonable

manner?

• Testing: Does the student test the program?

• Specification: Does the student take the specification into account? (e.g. in programming

task 7 the prerequisite is that there is at least one SalesNote object)

4 Evaluation
In this section, we present and discuss an evaluation of the lab examination described above.

4.1 Evaluation Method

The evaluation of the lab exam was performed in two ways: by analyzing the results of four

consecutive lab examinations (2003, 2004, 2005 and 2006) and by semi-structured individual

interviews with students, TAs, the examiner, and the lecturer.

4.2 Quantitative Evaluation

For each of the three years we have collected data about the students for four variables (and two

derived). The description of the variables can be found in Table 1.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 193

Variable Description

students students enrolled for the course

abort students that aborted the course before the final exam

exam students allowed to take the final exam

skip students that did not show up for the final exam but was allowed
to

fail students who failed the final exam

pass students who passed the final exam

Table 1: Description of type of data

The numbers in table 1 are related as follows:

 students = abort + exam

 exam = skip + fail + pass

From these numbers we calculate exam rate, pass rate and retention rate (exam/students,

pass/exam, pass/students). The results are presented in Table 2.

 2003 2004 2005 2006

students 276 220 295 326

abort 63 26 28 44

exam 213 194 267 282

exam rate 77.2 % 88.2 % 90.5 % 86.5 %

skip 13 5 3 1

fail 15 19 29 17

pass 185 170 235 264

pass rate 86.9 % 87.6 % 88.0 % 93.6 %

retention rate 67.0 % 77.3 % 79.7 % 81.0 %

Table 2: Statistics from three years of practical lab exams

The figures in Table 2 reveal two interesting aspects: the improved exam rate (and retention rate)

from 2003 to the following years, and the high pass rate in general.

The curriculum was radically redesigned in 2003 going from a semester structure to a quarter

structure; consequently the traditional CS1 course was split in two courses with an exam in

between. The students of 2003 were the first to take the new course with the new examination form,

and therefore there were no traditions for the students to lean on. In the following years (2004-2006)

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 194

the students have had the old exam questions to use for practice, and older students to hear war

stories from. In the following years the lecturer could be more explicit when describing the

requirements for the exam and the exam form. We believe that this is the primary reason for the

improved exam rate.

The pass rate is high compared to what others report (Andersson & Roxå , 2000; Börstler,

Johansson, & Nordstrom, 2002). We believe that this primarily is due to the alignment and the

strong conformity between goal, content and assessment of the course.

4.3 Qualitative Evaluation

The semi-structured interviews were conducted two to three weeks after the final exam. Ten

students were selected to get a mixture of major and gender. One interviewer conducted each

interview. The interviews were audio taped for later analysis. The interviews followed an interview

guide focusing on three topics: the lab exam form in general, this specific exam, and the evaluation

form compared to other evaluation forms. In the analysis that follows, quotations from the interviews

are presented that describes the general attitude of the group. The interviews were done in Danish,

and the quotations translated into English by the authors.

4.3.1 The Students

There was a very little difference in the way that the interviewed students had experienced the lab

exam; their answers were largely similar. We find therefore that the students are representative of

the general attitude towards the exam, although we cannot be sure.

All of the interviewed students found the evaluation form fair. They defined fair as if you have

practiced during the course, you can expect to pass the exam. They all found that the form and

content of the exercise was very adequate with respect to the goals of the course. As one student

noticed: Programming requires very abstract thinking, but it is also a craft ... the examination form

perfectly suits this mixture

One of the students did not like it that a TA was looking over her shoulder. She felt insecure and

nervous. However, she was the only one having this experience – no one else minded having the

TAs around (some even found their presence to give more peace of mind).

The examination incited the students to practice programming. As an option for the students, exam

exercises from the previous year were available for preparation for the exam. Almost all of the

students interviewed indicated that they had solved most of the previous exam exercises when they

prepared for the exam; as one student replied when asked about his preparations: I solved all the

[old] exam exercises.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 195

Students were instructed to call the TA after solving the first three tasks of the exercise (Figure 1) to

demonstrate what they had achieved. None of the students found this to be problematic, but some

of them pointed to the possible problem, that the slow students might feel this as an extra stress

factor (knowing that many of the other students have finished). In conclusion, only one of the

interviewed students felt the examination to be stressful.

All of the interviewed students felt that a more fine-grained marking could take place, but it would

require more time and more tasks. Most thought that one hour would be sufficient for this.

4.3.2 The Teaching Assistants

The interviews with the teaching assistants in many ways supported the statements from the

students. They also found the exam to be fair and had the impression that it evaluates the students

programming skills.

In the beginning, the TAs had some difficulties knowing to what extent they could answer questions.

During the exam, the TAs developed a practice: they helped a student who had spent several

minutes trying to figure out a simple problem, but did not help with problems that were more

fundamental. If in doubt, the TAs asked the lecturer or examiner. Apart from this, they did not feel

uncomfortable with they role.

4.3.3 The Lecturer and the External Examiner

Both the lecturer and the examiner found the exam form to be both fair and evaluating the learning

objectives of the course. The external examiner found that the exam evaluated the student’s

understanding of the general concepts although it was impossible to evaluate that the student was

able to explain [...] fundamental elements in a modern programming language. They found that it

was easy to assess an objective pass/fail criterion due to the generic exercises. The examiner

thought that a little longer time would give an even better evaluation criterion.

The examination gave a good impression of the students programming skills including their

programming process. As the examiner said: When you get an error message from the compiler you

must be able to figure out what is wrong … that is a part of a practical programming skill.

4.4 Evaluation of the Evaluation of the Process

In section 3.2, we demonstrated how careful and detailed phrasing of an assignment can guide the

students through an incremental programming process characterised by a (more or less) monotone

development trace.

We have used similar phrasing for the final exam in order to ease evaluation of the students (the

more control we have of their process, the easier it is to evaluate progress). This raises the question

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 196

of how well we really can evaluate the students programming process; if we provide detailed

guidance, how then can the students demonstrate their personal competence on this issue?

In order to evaluate the learning effect specifically with respect to process competence, we set up

an experiment just prior to the previous final examination. We designed a programming task where

no guidance at all was provided; the assignment consisted of a class model and functional

specifications of the methods of the classes. Apart from the lack of a detailed description, the

content and level of the assignment were comparable with the general assignments as illustrated in

Figure 1. The assessment used for the experiment can be found in the Appendix.

All students participating in the course in fall 2006 were invited to take part in the experiment, and

38 students accepted the invitation (the students who accepted the invitation were representative of

the whole population with respect to major).

Our goal was to evaluate the students programming process now that no guidance was provided. A

group of TAs examined the students and took notes of their behaviour; the student/TA ratio was 3/1.

The TA’s were instructed to make notes of the students’ programming process. In particular, they

should make a note whenever a student violated the ‘standard process’ that had been taught in the

course (demonstrated through live programming and several videos of worked examples).

The conclusion of the experiment was that all students followed the process they had been taught

even though no guidance was provided. They developed one part of the program at a time nicely

separating the different concerns of the task. There was some variation as to how frequent the

students swapped between writing test code and writing production code and as to whether they

wrote the test code before or after the production code. The programming process we teach the

students suggests writing test code before the production code, but almost all the students wrote

the production code first.

Interestingly, hardly any of the students took the easy way out by implementing Comparable in

order to get away with trivial implementations of three of the requested methods.

Immediately after the practice exam, we conducted informal interviews with groups of students.

When asked about their testing behaviour (less frequent and after the fact), they responded that

they did not feel the need for the test in order to implement the requested methods; they wrote the

test because they had to, and not because the needed it to understand the task. It is hard to blame

them on that because their behaviour mirrors expert behaviour (Robillard, 2005; Winslow, 1996).

We refrain from drawing too strong conclusions from this experiment, but the result suggests that

students do learn the process we teach ⎯at least when they are exposed to familiar tasks. But,

again, this is just as it is with experts. Winslow (1996) puts it this way: Experts, when given a task in

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 197

a familiar area, work forward from the givens and develop subgoals in a hierarchical manner, but

given an unfamiliar problem, fall back on general (opportunistic) problem solving (p. 18).

4.5 Concluding the Evaluation

The exam tests the process as well as the product. In some cases the process was the decisive

factor. One special example of this was a student that was ill and therefore worked very slowly;

however slow, her programming process was very good demonstrating a systematic approach to

solving the problems.

The evaluation indicates that the lab examination supports the learning objective of the course. The

students and the lecturer/examiner consider the lab examination fair. The assessment does not

require many resources: 250 students can be handled using less than 90 person-hours.

Low retention is one of the main problems in CS1 courses. As noticed by Kumar (2003 p. 40) their

retention “has been around 50%”. In this course, the retention is above 75%. We have found that

the examination form kept the students up to the mark; they did actually practice programming. We

think this is one of the explanations of the relatively high retention rate.

For computer science students the examination form must be seen in conjunction with the

examination form of the following course (the second part of CS1), in which an oral examination

focusing more on the conceptual aspects of introductory programming is used. There is a

progression from the first exam to the next, from testing practice to testing conceptual knowledge.

5 Related Work
Recently, a growing number of papers reporting on laboratory exams for introductory programming

courses have been published (Barros, Estevens, Dias, Pais, & Soeiro, 2003; Califf & Goodwin,

2002; Chamillard & Braun, 2000; Daly & Horgan, 2005). All report good results using this apparently

novel assessment form. However, a common characteristic of the assessment methods presented

in these articles, and a deficiency compared to the method described herein, is that the evaluation

and grading is based solely upon the end product, the students’ final solutions.

In (Califf & Goodwin, 2002) the authors describe the grading in their lab final (their word for lab

exam): Grading on the exam is focused on working programs. Only the result of the process is

evaluated, not the process. Barros reports on the use of lab exams during the course, but the final

exam is a traditional written exam. The rationale behind maintaining code written in the final exam

was to evaluate the students in an environment where trial and error is simply not possible (2003,

p.18). Again, they do not include an evaluation of the programming process in their lab exam; the

focus is on the final product only.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 198

6 Conclusion
We have described and evaluated a lab exam which has a number of advantages. It is simple to

evaluate the student’s programming process as well as the product (the result of the student’s

efforts). It is a fair and effective exam. We use standardized exercises that each covers more than

80% of the curriculum. The environment for the exam is the normal daily work environment. It is a

lightweight exam easy to prepare and carry out. It requires a couple of days to prepare the

exercises for the exam, and we had a throughput of 100 students per day. Everyone involved, in

particular the students, regarded the form as well as the content of the exam to be very good and in

excellent correspondence with the learning objectives of the course.

7 Acknowledgement
It is a pleasure to thank Gudmund Frandsen for valuable comments during development and

practice of the lab exam described and evaluated in this paper. We will also like to thank the

students and TAs who participated in the interviews. A special thank to Michael Kölling and the

anonymous reviewers for valuable comments on earlier versions of this article.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 199

8 References

Andersson, R., & Roxå , T. (2000). Encouraging students in large classes. SIGCSE '00:
Proceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science
Education, Austin, Texas, United States. 176-179

Barros, J. P., Estevens, L., Dias, R., Pais, R., & Soeiro, E. (2003). Using lab exams to ensure
programming practice in an introductory programming course. ITiCSE '03: Proceedings of the
8th Annual Conference on Innovation and Technology in Computer Science Education,
Thessaloniki, Greece. 16-20.

Bennedsen, J., & Caspersen, M. E. (2004). Programming in context: A model-first approach to CS1.
SIGCSE '04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education, Norfolk, Virginia, USA. 477-481.

Bennedsen, J., & Caspersen, M. E. (2005). Revealing the programming process. SIGCSE '05:
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education, St.
Louis, Missouri, USA. 186-190.

Bennedsen, J., & Caspersen, M. (2006). Assessing process and product — A practical lab exam for
an introductory programming course. Proceedings of the 36th Annual Frontiers in Education
Conference, San Diego, California. M4E-16-M4E-21.

Bergin, J. (2006). Pedagogical patterns. Retrieved January 21st, 2007, from
http://csis.pace.edu/~bergin/#pedpat

Biggs, J. B. (2003). Teaching for quality learning at university (Second ed.) Berkshire, United
Kingdom: Open University Press.

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1956). Taxonomy of educational objectives. the
classification of educational goals. handbook I: Cognitive domain. New York: Longmans,
Green.

Börstler, J., Johansson, T., & Nordstrom, M. (2002). Teaching OO concepts-a case study using
CRC-cards and BlueJ. Proceedings of the 32nd ASEE/IEEE Frontiers in Education Conference,
Boston, Mass. T2G-1-T2G-6.

Brown, R. W. (2001). Multi-choice versus descriptive examinations. Proceedings of 31st Annual
Frontiers in Education Conference, 2001. Reno, NV, USA. T3A-13-T3A-18.

Califf, M. E., & Goodwin, M. (2002). Testing skills and knowledge: Introducing a laboratory exam in
CS1. SIGCSE '02: Proceedings of the 33rd SIGCSE Technical Symposium on Computer
Science Education, Cincinnati, Kentucky. 217-221.

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming course - A
learning theoretical approach. Proceedings of the Third International Computing Education
Research Workshop. Atlanta, GA, USA. To appear.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 200

Caspersen, M. E., & Christensen, H. B. (2000). Here, there and everywhere — on the recurring use
of turtle graphics in CS1. ACSE '00: Proceedings of the Australasian Conference on Computing
Education, Melbourne, Australia. 34-40.

Caspersen, M. E., & Kölling, M. (2006). A novice's process of object-oriented programming.
OOPSLA '06: Companion to the 21st ACM SIGPLAN Conference on Object-Oriented
Programming Languages, Systems, and Applications, Portland, Oregon, USA. 892-900.

Chamillard, A. T., & Braun, K. A. (2000). Evaluating programming ability in an introductory computer
science course. SIGCSE '00: Proceedings of the Thirty-First SIGCSE Technical Symposium on
Computer Science Education, Austin, Texas, United States. 212-216.

Daly, C., & Horgan, J. (2005). Patterns of plagiarism. SIGCSE '05: Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education, St. Louis, Missouri, USA. 383-387.

Daly, C., & Waldron, J. (2004). Assessing the assessment of programming ability. SIGCSE '04:
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education,
Norfolk, Virginia, USA. 210-213.

Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D., Harding, T., et al. (2002). Addressing student
cheating: Definitions and solutions. ITiCSE-WGR '02: Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education, Aarhus, Denmark. 172-184.

Fincher, S., & Petre, M. (2004). Computer science education research. London: Routledge Falmer.

Frandsen, G. S., & Schwartzbach, M. I. (2006). A singular choice for multiple choice. ACM SIGCSE
Bulletin, 38(4), 34-38.

Kumar, A. N. (2003). The effect of closed labs in computer science I: An assessment. Journal of
Computing Sciences in Colleges, 18(5), 40-48.

Lancaster, T., & Culwin, F. (2004). A comparison of source code plagiarism detection engines.
Computer Science Education, 14(2), 101-117.

Lister, R., & Leaney, J. (2003). Introductory programming, criterion-referencing, and bloom. SIGCSE
'03: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education,
Reno, Navada, USA. 143-147.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., et al. (2001). A
multi-national, multi-institutional study of assessment of programming skills of first-year CS
students. SIGCSE Bulletin, 33(4), 125-180.

Muller, O. (2005b). Pattern oriented instruction and the enhancement of analogical reasoning. ICER
'05: Proceedings of the 2005 International Workshop on Computing Education Research,
Seattle, WA, USA. 57-67.

Prior, J. C., & Lister, R. (2004). The backwash effect on SQL skills grading. ITiCSE '04: Proceedings
of the 9th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education, Leeds, United Kingdom. 32-36.

Ramsden, P. (1992). Learning to teach in higher education. London: Routledge.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 201

Roberts, T. S. (2006). The use of multiple choice tests for formative and summative assessment.
ACE '06: Proceedings of the 8th Australian Conference on Computing Education, Hobart,
Australia. 175-180.

Robillard, P. N. (2005). Opportunistic problem solving in software engineering. IEEE Software,
22(6), 60-67.

Rowntree, D. (1977). Assessing students. how shall we know them. London: Harper & Row.

Stiggins, R. J. (2005). Student-involved assessment for learning. Upper Saddle River, NJ: Prentice-
Hall.

Tyler, R. W. (1949). Basic principles of curriculum and instruction. Chicago: The University of
Chicago Press.

Winslow, L. E. (1996). Programming pedagogy — a psychological overview. SIGCSE Bulletin,
28(3), 17-22.

Woodford, K., & Bancroft, P. (2005). Multiple choice questions not considered harmful. ACE '05:
Proceedings of the 7th Australasian Conference on Computing Education, Newcastle, New
South Wales, Australia. 109-116.

ITALICS Volume 6 Issue 4, October 2007
ISSN: 1473-7507 202

Company

String name

void getName()

void add(Customer c)

void remove(Customer c)

List<Customer> select(int g)

Customer bestCustomer()

Customer worstCustomer()

void printCustomers()

Customer

String name

int amount

String getName()

int getAmount()

void buyFor(int x)

*

A. Appendix
This exercise is about handling customers in a firm where –among other things – the firm needs to
keep track of how many money each customer buys for.

Implement the class model below and a Driver-class that tests all the essential parts of the classes
Customer and Company.

Company
In Company the field-variable name and the
methods getName, add and remove are
obvious.

The method select(int x) must return a list of
customers who have bought for a least x Kroner.

The method bestCustomer must return a
customer who has bought for the most amount of
money, and likewise must worstCustomer
return a customer who has bought for the least
amount of money.

Note the indefinite article ”a” customer … If more
than one customer has bought for the maximum
amount of money (respectively the minimum
amount) it is secondary what customer will be
returned

The method printCustomers prints out all
customers with one customer pr. line. The printout
must be ordered alphabetically by customer-name.

Customer

In the class Customer, name is a
customers name and amount is the total
amount a customer has bought for.

The methods getName og getAmount
are obvious. The method buyFor is
called when the customer have bought for
a given amount (x) and must cause
amount to be updated so that the new
amount is reflected in the field variables
value..

The method toString must return a
String-representation of a Customer-
object in the following form (example):
”Karsten Riis, 7500”.

