9th Koli Calling International Conference on Computing Education Research

Koli National Park, Finland, November 2009

Recalling Programming Competence

Jens Bennedsen
Engineering College of Aarhus
Dalgas Avenue 2
DK-8000 Aarhus C, Denmark
job@iha.dk

ABSTRACT

Programming is recognised as one of seven grand challenges
in computing education and attracts much attention in com-
puting education research. Most research in the area con-
cerns teaching methods, educational technology, and stu-
dent understanding/misconceptions. Typically, evaluation
of learning outcome takes place during or immediately fol-
lowing the educational activity. In this research, we con-
duct a qualitative investigation of sustainability of program-
ming competence by studying the effect of recalling pro-
gramming competence long time after the educational activ-
ity has taken place. Our population consists of ten students
who have taken an introductory object-oriented program-
ming course 3, 15, or 27 months prior to our study. None
of the students have been exposed to programming in the
intervening period. As expected, our research shows that
syntactical issues in general hinder immediate programming
productivity, but more interestingly it also indicate that a
tiny retraining activity and simple guidelines is enough to
recall programming competence and overcome syntactical
issues.

Categories and Subject Descriptors

K3.2 [Computers&Education]: Computer and Informa-
tion Science Education—-computer science education, infor-
mation systems education

General Terms

Experimentation, Human Factors

Keywords

CS1, object-oriented programming, remembering

1. INTRODUCTION

For many years there have been a massive interest in pro-
gram education research and development. Teaching meth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Koli Calling 09 October 29 - November 1, 2009, Koli, Finland

Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

86

Michael E. Caspersen
Department of Computer Science
Aarhus University
DK-8000 Aarhus C, Denmark
mec@cs.au.dk

ods, materials, and educational technology have been devel-
oped to help students better learn how to program. Some
of these innovations have been systematically evaluated for
their impact, but in general the measurement of success is
defined by how well the students perform at the final exam
or at tests during the course. The quest for success indica-
tors is an example of such studies (see e.g. [8, 42, 7]), and
so are studies that evaluate educational technology (see e.g.
(38, 24, 21]). Evaluating the impact immediately after the
course, is of course both interesting and relevant, but in gen-
eral the goals of our teaching is not only that the students
perform well at the final exam, but that the students achieve
relevant and lasting programming competences.

Computing competences are becoming relevant in many
fields; consequently, many students who will not major in
computer science will be required to take an introductory
computing course [18]. Many introductory computing course
has programming as a core activity and learning goal, and
for good reasons since programmability is the defining char-
acteristics of the (digital) computer. This is also echoed in
the ACM/IEEE curriculum recommendations. Currently,
a revision and enlargement of the curriculum recommen-
dations is under way, broadening the scope from traditional
computer science to the broader field of computing [35], from
Information Systems [16] to Computer Engineering [37].In
e.g. “the model curriculum and guidelines for graduate de-
gree programs in information systems” [17] it is noted that
Students entering the MSIS program need the content of the
following courses ... programming (p.138).

We forget things. The cognitive structures that store facts
and schemes typically become less accessible over time, and
forgetting is more likely to take place when memory ele-
ments are not accessed and used [9]. By fitting data from
several experiments in cognitive psychology, Woodworth [45]
created the so-called forgetting curve, see figure 1. Accord-
ingly, it should be expected that students do not have the
same competences say one year after an exam as they had
right after the exam.

In our current research, we are particularly interested in
studying the durability of programming competences achieved
in an introductory object-oriented programming course for
non-CS majors. We have conducted a qualitative investiga-
tion of sustainability of programming competence by study-
ing the effect of recalling programming competence long
time after the educational activity has taken place. Our
population consists of ten students who have taken an in-
troductory object-oriented programming course 3, 15, or 27
months previous to our test. None of the students, who are

9th Koli Calling International Conference on Computing Education Research

[r]

£ 100 4

=T -

° 2

@ = G0 A

=

§§ 40

o 20 A

=

D T T
0 &0 100

time since "learned”

Figure 1: Classic shape of the forgetting curve
(Woodworth, 1938).

majors in bio-technology, have been exposed to program-
ming in the intervening period.

The remaining part of the article is organised as follows:
Section two describes related work primarily in cognitive
psychology. In section three and four we describe the in-
structional design of the introductory programming course.
Section five presents our hypotheses and research questions,
and section six presents our research design. In section seven
we describe and analyse our observations. Potential future
work is described in section eight, and section nine is the
conclusion.

2. RELATED WORK

This section describes the related work. It focuses on two
things, work in the area for forgetting and work in the area
of remembering programming competences.

2.1 Memory

The memory is fallible. The fact that we gradually forgets
was first documented by Ebbinghaus [14] in a study where
he first tried to learn nonsense syllables and then tried to
remember as much as possible at various delays after the
learning. His conclusion was, that there was a rapid drop-
off in retention in the beginning and then a more gradual
drop-off later. As he wrote: One hour after the end of the
learning, the forgetting had already progressed so far that
one half the amount of the original work had to be expended
before the series could be reproduced again; after 8 hours the
work to be made up amounted to two thirds of the first ef-
fort. Gradually, however, the process became slower so that
even for rather long periods the additional loss could be as-
certained only with difficulty. After 24 hours about one third
was always remembered; after 6 days about one fourth, and
after a whole month fully one fifth of the first work persisted
in effect (section 29, [15]). Ebbinghaus found that a complex
logarithmic function described his data. Later it has been
shown [43] that a power function y = at” better describes
the relation between time and remembering. The values of
«a and S relies upon the actual person and the “thing” to
remember.

Apart from an interest in forgetting, Ebbinghaus was also
interested in the effect of repeated learning. He found that
The relation is quite similar to that described in Chapter VI
[the relation between time and forgetting] as existing between

87

Koli National Park, Finland, November 2009

the surety of the series and the number of its repetitions
(section 31, [15]).

Relearning affects forgetting. As Schacter [33] notice it
is known, for instance, that retrieving and rehearsing expe-
riences play an important role in determining whether those
experiences will be remembered or forgotten (p. 184). The
current memory model is actually more complex than a sim-
ple correlation between recall and remembering. Loftus [25]
have found four major reasons why people forget: retrieval
failure (memory traces decay over time), interference (mem-
ory may compete and interfere with other memory) , failure
to store (e.g. details may be filtered out) and motivated
forgetting (we want to forget e.g. traumatic things). As
Anderson, Bjork and Bjork [2] notice a striking implication
of current memory theory is that the very act of remember-
ing may cause forgetting. It is not that the remembered item
itself becomes more susceptible to forgetting; in fact, recall-
ing an item increases the likelihood that it will be recallable
again at a later time. Rather, it is other items — items that
are associated to the same cue or cues guiding retrieval —
that may be put in greater jeopardy of being forgotten. (p.
1063). According to Anderson, Bjork and Bjork the reason
for this is three assumptions on how the memory work

the competition assumption Memories associated to a
common cue compete for access to conscious recall
when that cue is presented,

strength dependence assumption a cued recall of a mem-
ory will decrease as a function of increases in the strength
of its competitors,

retrieval-based learning assumption Recall of a mem-
ory enhances subsequent recall of that memory.

The knowledge of forgetting have inspired many (primary)
schools to evaluate their school calendar [13]. In general
there seems to be an impact of a calendar model with many
small breaks as opposed to one long summer break since
students tend to perform better on tests with many small
breaks rather than one large break. The effect of forget-
ting was notable particularly with respect to math facts and
spelling. Findings in cognitive psychology suggest that with-
out practise, facts and procedural skills are most susceptible
to forgetting [12]. The categories of facts and procedural
skills most likely encompass the idiosyncrasy of program-
ming language syntax and programming skills which is the
focus of our research.

2.2 Learning to Program

Many approaches to introductory programming educa-
tion have been proposed including a procedures early ap-
proach [29], a top-down approach [19, 30], a graphics ap-
proach [26]. Even within introductory object-oriented pro-
gramming, many different approaches exist: objects early
[1], interfaces early [34], GUIs early [44], concurrency early
[31], events early [39], components early [20], etc.

All of these articles about introductory programming ed-
ucation describe different (groups of) people’s approaches.
However, many are in the “Marco Polo” style of reporting
research in introductory programming [41]; or, to be more
precise, they argue that a certain approach is better than
others based on the assumption that certain learning out-
comes should be promoted.

9th Koli Calling International Conference on Computing Education Research

To properly evaluate the long-time learning effect of a pro-
gram course, we must take as starting point the intended
learning outcomes (ILO) of the course. Whether the ILO
focus on special features of the programming language, the
process of program development, or something else, has an
impact on how we must test and recall programming compe-
tences. In the following section we will describe the ILO for
the introductory object-oriented programming course taken
by our population of students.

3. TEACHING PROGRAMING USING A MO-

DEL-BASED APPROACH

In [22] three perspectives on the role of a programming
language are described:

Instructing the computer The programming language is
viewed as a high-level machine language. The focus is
on aspects of program execution such as storage layout,
control flow and persistence. In the following we refer
to this perspective as coding.

Managing the program description The programming
language is used for an overview and understanding of
the entire program. The focus is on aspects such as
visibility, encapsulation, modularity, separate compi-
lation.

Conceptual modelling The programming language is used
for expressing concepts and structures. The focus is on
constructs for describing concepts and phenomena.

When designing a programming course, one must bal-
ance the three perspectives; in a model-based programming
course, by definition, conceptual modelling plays the most
important role. In the course under consideration, the pro-
gression in the course is defined not by the syntactical struc-
ture of the programming language, as is usually the case
[32], but by the complexity of specification models, i.e. class
models and functional specifications of methods. Early in
the course, examples, exercises and assignments address pro-
gramming tasks described by simple specification models
(one class only or two classes with a simple relationship and
simple functional specifications); later in the course the pro-
gramming activities are defined by more complex specifica-
tion models (more classes with more advanced relations and
more complex functional specifications).

The official ILO for the course is phrased as follows: After
the course, the students must be able to apply fundamen-
tal constructs of a common programming language, identify
and explain the architecture of simple programs, identify
and explain the semantics of simple specification models,
implement simple specification models in a common pro-
gramming language, and apply standard classes for imple-
mentation tasks.

The evaluation of programming competences in this course
is done by a 30 minute practical exam. For a description of
how we measure the students‘ programming competences,
see [6].

For a more detailed description of the model-based pro-
gramming course design, see e.g. [4, 10, 5].

4. THE PROGRAMMING COURSE

The programming course under consideration spans the
first half of CS1 at Aarhus University. The course runs for

88

Koli National Park, Finland, November 2009

Content

Getting started: Overview of fundamental concepts.
Learning the IDE and other tools.

Learning the basics: Class, object, state, behaviour,
control structures.

Conceptual framework and coding patterns: Con-
trol structures, data structures (collections), class rela-
tionship, patterns for implementing structure (class rela-
tionship)

Programming method: Stepwise
schemes for implementing functionality.
Subject specific assignment: Practise on harder prob-
lems.

Practise: achieve routine in solving standard tasks.

improvement,

Table 1: Course phases

seven weeks, and after the course there is a practical lab
examination with a binary pass/fail grading. The grading
is based solely upon the behaviour in and result of the final
examination; acceptable performance in weekly mandatory
assignments during the course is a prerequisite for the fi-
nal exam but does not count as part of the grading. There
are approximately 350 students per year from a variety of
study programmes, e.g. bio-technology, chemistry, computer
science, mathematics, geology, nano science, economy, and
multimedia. 40% of the students are majors in computer sci-
ence; of course they continue with many more programming
or programming related courses. For most of the remaining
students, this is the only mandatory programming course in
their curriculum, but some choose follow up courses as elec-
tives and some do have special follow up courses related to
their field (e.g. multimedia programming or scientific com-
puting).

The students are grouped in classes of approximately 20
students; typically there are 17-18 teams per year. Each
class has its own teaching assistant (TA) who is typically a
PhD student in computer science.

We adopt an incremental approach to programming edu-
cation in which novices are provided with worked examples
[40] and initially do very simple tasks and then gradually do
more and more complex tasks, including design-in-the-small
by adding new classes and methods to an already existing
design. Table 1 gives an overview of the phases and content
of the course.

For a more detailed discussion of the design of the course
from a learning theoretic perspective, see [11].

5. RESEARCH QUESTIONS

As described in section 2, we forget things, and forgetting
is more likely to take place when memory elements are not
accessed and used. Programming fluency involves a lot of
specific skills related to the programming language (syntax,
semantics, and pragmatics), the development environment
(editor, compiler, interpretation of error messages, and de-
bugging), use of API, etc. The first category of skills, which
we denote concrete programming competences, implies that
programmers possess a great deal of fingertip knowledge
about many specific, technical details and is therefore par-
ticular vulnerable with respect to being forgotten when not
practised and applied,. Another category of programming
skills and competences relate to problem solving and appli-

9th Koli Calling International Conference on Computing Education Research

cation of patterns to solve recurring (types of) problems; we
denote this abstract programming competences. The exami-
nation form ensures that these programing skills and compe-
tences have been present, but how long and how well do they
last, and how easy is it to recall them? Our two hypotheses,
which forms the basis for this research, are:

Forgetting The students have forgotten the concrete pro-
gramming competences quickly after they have passed
the course.

Learning It does not take much effort for the students to
recall the concrete as well as more abstract program-
ming competences.

The two hypotheses are operationalised into the following
research questions:

RQ:: Forgetting Have the students forgotten their con-
crete programming competences?

RQ2: Learning Can the students with a limited effort re-
call their programming competences? And what are
the challenges for recalling once learnt skills and com-
petences?

6. RESEARCH DESIGN

This section describes the design of the research.

6.1 Participants

From the general cognitive theory, we expect that the stu-
dents‘ programming competences are forgotten if not prac-
tised and applied. Thus, in order to test our hypotheses and
answer our research questions, we need to identify a group
of students who have not programmed since they passed the
introductory programming course. This naturally rules out
computer science students. As described in the introduction,
many other students take programming classes, but this is
not the case for students majoring in bio-technology.

Students from bio-technology take the introductory pro-
gramming course in the third quarter of the first year. They
have no other mandatory programming courses, and they
do not practise programming as part of their studies. These
students fulfil the overall requirement (they have not been
programming for X months) and they are a group that can
be addressed, since most of them still follow the same study
program. There are currently 45 students in the bachelor
program of bio-technology (14 in the first year, 17 in the sec-
ond year, and 14 in the third year). This makes it difficult
to do quantitative analyses (the number of students are too
small in each group). Consequently, we have designed the
research not with the focus of giving general, generalisable
answers but rather as providing new insight and pointers to
factors it might be interesting to investigate further.

Based on the research questions and the group of students
that are accessible, we observe the students performing pro-
gramming with a focus on the problems they encounter as
they go along. We do this twice: A pre-test before the stu-
dents get a chance to brush-up of their programming com-
petences, and a post-test after the students have received
a brush-up. Finally we interview the students in a semi-
structured focus group interview.

Year | Months since | Male | Female | Programming
prog. course since course

2007 | 27 1 0 course using
MathLab

2008 | 15 0 4 none

2009 | 3 2 3 none

Table 2: The students participating in the experi-
ment

6.2 Evaluation of Programming Competences

A key question is how we can evaluate the students pro-
gramming competences? The exam of the course evaluates
the learning goals of the course and consequently the pro-
gramming competences the students should possess. We
evaluate the students using two programming tests similar
to the one used in the final exam of the introductory pro-
gramming course. In [6] we argue that the exam actually
measures the goals of the course. The pre-test can be seen
in the appendix; the post-test is similar to the pre-test ex-
cept for another cover story.

6.3 Rehearsing Programming Competences

The next question is what “limited effort” mean (RQ2)?
Shall the try to recall the students’ programming compe-
tences through practise or through a general presentation
of key concepts, techniques, and examples? And shall we
provide some kind of assistance to recall their programming
competences during the post-test?

Ideally we would like to “measure” the learning effort it
takes a given student to be able to solve the task in the pre-
and post-test. This is in practice impossible! As a com-
promise, we offer the students an overview of the central
programming language constructs (basic statements, con-
trol structures, method, attribute, class, etc.) and central
concepts such as association (one-to-many) and collections
and how these are realised in the programming language
(Java). Furthermore, we give the students one of two kinds
of help when solving the post-test. In the final focus group
interview we specifically address how the learning aids have
helped the students.

6.4 Concrete experiment design

We invited all bio-technology students from the first, sec-
ond, and third year to participate in the experiment (45 in
total). 12 responded positively to our invitation, and 10 ac-
tually participated in the experiment. The students were
not paid (apart from a dinner at the end), nor did they
get course-credit for the experiment. The students had the
characteristics described in table 2.

The experiment was conducted a late afternoon in a computer-

lab (the same that was used for the lab-sessions during the
course) and lasted 3 hours. The agenda for the experiment
was as follows:

1. Welcome and introduction

2. Short repetition of use of the development environment
(BlueJ [23])

3. Pre-test

4. Brush-up of programming competences

89

Koli National Park, Finland, November 2009

9th Koli Calling International Conference on Computing Education Research

5. Post-test
6. Focus group interview

The welcome and introduction motivated the study and
gave a general overview of the content of the afternoon. This
part took 15 minutes.

The repetition of the development environment helped the
students to remember how the IDE was designed and how
to edit and compile programs. This was done via a few
exercises the students had to solve — exercises from the
textbook used when the students had the course [3]. This
was done in order to have programming in focus, not the
tool used for programming. The exercises included a small
amount of actual programming (the students typed in some
code that was provided, they did not develop the solution
themselves). The students had therefore seen some Java
code just before the pre-test. This part took 15-20 minutes
(some students finished before others).

The pre-test was a standard assignment from a final exam.
Four researchers observed the students (2-3 students per
researcher). When the students got stuck, we noticed the
problem and evaluated how the students tried to solve the
problem. If the students had been stuck for a long period of
time, we helped the students to move on and noted this help.
The test lasted 30 minutes; same duration as the ordinary
exam.

The brush-up of programming competences was done us-
ing some general slides from the introductory programming
course. The slides describe general concepts (object, class,
attribute, method, constructor, parameter, type, statement,
selection, iteration, association and collection) and how these
look in Java. The students could ask questions and discuss
during the brush-up session. Nearly all of the students‘ ques-
tions were about specific details in Java. The students did
not do practical programming during the brush-up session.
This part of the experiment lasted one hour.

Also the post-test was a standard assignment from a fi-
nal exam. In order to evaluate different aids, we divided
the students into two groups: One group received a model
solution for the pre-test, the other group received a gen-
eral description of how to implement classes, associations
and two algorithmic patterns (that typically occur in exam
assignments): (1) in a collection of objects, find one that
matches a given criteria, and (2) in a collection of objects,
find all that matches a given criteria. The first help was
very concrete; the second incorporated the idea of pattern-
oriented instruction [28] which was emphasised in the ordi-
nary course. As for the pre-test, four researchers observed
the students and noted their difficulties. The post-test was
also time-boxed to 30 minutes.

The focus group interview lasted 35 minutes and focused
on the students difficulties, the difference between concrete
programming competences and general competences, the ef-
fect of the intermediate learning task (the brush-up of pro-
gramming competences), the influence of the aids provided,
and general comments.

7. OBSERVATIONS AND ANALYSIS

This section describes and analyses the observations made
during the experiment and the final focus group interview
in order to answer the two research questions.

90

Koli National Park, Finland, November 2009

Month
since
prog.
course
3 8

Last com- | Problems
pleted ex-

ercise

Did extremely well. Used
compareTo instead of
equals for checking if
strings are equal.

Many problems with syn-
tax like forgetting a method
name.

Many syntactical problems.
Declared attributes in the
constructor.

Methods without a signa-
ture. Confused about the
value of a name-attribute
and a reference to the given
object.

Parameters for the values
of the attributes in the
toString() method.

Many syntactical problems.
The toString() method
was implemented by return-
ing a string literal instead
of values of variables.

Did fairly well. Wrote
statements directly in the
class without a surrounding
method, but worked it out
by himself.

Called a non-existing
method (gettoString()).
Declared an attribute called
toString. Declared at-
tributes in the constructor.

3 none

15 none

15 none

27 none

15 3

15 none

Table 3: Each student‘s performance in the initial
test

7.1 Forgetting

In this subsection we will look at RQ1.

As expected, the concrete syntax was a major problem for
almost all of the students. As one of the students noticed in
the interview: You quickly forget when to type a parenthesis
or a semicolon - you can remember that it is important that
they are put in the right place, but where that is An-
other student expressed it the following way: I had many
problems in the first test. I could not remember how to write
it — the class and the other stuff — I could remember that
this class was a class and you can create objects from it, but
in the code, I could not remember what to write and how
to call. I could remember that you had to return something

but how it should be written and worked, I had totally
forgotten .

There was a difference between the students who took
the course three month ago and the other students. All
of the students had problems with the specific syntax, but
the “younger” students (measured in time since they had the
introductory course) had significantly less problems than the
“older” students as can be seen from table 3. One of the

9th Koli Calling International Conference on Computing Education Research

students (number 1) would actually have passed the test if
it had been a real exam.

If we look more closely at the problems many students
encountered in the pre-test, they include the following:

Attributes Many declared the attributes in the construc-
tor and found it very difficult to initialise them.

Parameters Many found it difficult to declare parameters.
It seemed like they had the idea of passing informa-
tion through parameters but the concrete syntax was
a problem.

Screen output vs. return value Many implemented the
toString () method using a System.out.println(...)
and could not understand the error “missing return
statement”.

Programming process Many students gave up on a given
question and left it unsolved even though it was re-
quired to solve the next question.

In general we conclude that the students had forgotten
their specific programming competences. Only one student
(who took the course three months ago) could solve more
than very basic programming tasks. This student would
have passed, had it been a real exam.

7.2 Learning

In this subsection we will look at RQa.

After the students had refreshed their programming com-
petences, they performed significantly better as can be seen
from table 4. If the post-test had been a real exam, seven
of the ten students would have passed it!

In general, the aid that was provided helped the students.
All of the students who had the model solution from the
pre-test, performed well. In fact, they would all have passed
had it been a real exam.

The students used the model solution in different ways.
Some students started out on their own and just used the
solution when they encountered a problem they could not
solve by themselves. As one student said: I did not use
it for the first six questions ... there were something about
ArrayList, how to write it, otherwise it was only in the end
where you have to write a for-loop, I could not remember
how to write that. I do understand the meaning and what
it 1s, but I cannot remember how to write it. Others used
it more systematically: I become a little stubborn when I
get such one [a solution]. I want to do it by myself ... but
I used it anyhow [for most of the test] because there were
many things I could not remember .

The performance of the students who got the general de-
scription was somewhat more diffuse. In general, they per-
formed significantly better than in the pre-test, but not all
would have passed had it been a real exam. Some students
found it difficult to put the general solution to practice.

In general the Refreshment of programming competences
phase in the experiment helped the students. As one student
said I think it helped me a lot — the PowerPoint show —
because I had completely forgotten all. I actually think I had
forgot that there should be a list if it wasn’t told.

In the Refreshment of programming competences phase,
many students had good and in-depth questions using cor-
rect terminology for programming concepts. We see this as

91

Koli National Park, Finland, November 2009

Month Last type of | Problems

since com- help

prog. pleted

course exercise

3 9 G None.

3 9 S Forgot to include
statements in { }.

3 9 G None.

3 2 G Wrote literals instead
of identifiers in the
parameter list of the
constructor.

15 7 S None.

15 8 S None.

27 5 G Forgot to import
java.util.*.

3 9 S None.

15 8 S None.

15 4 G Instead of type-
identifier pairs in
the parameter list,
she wrote identifier-
identifier pairs where
the first identifier
was the attribute
and the second was
the parameter.

Table 4: Each student‘s performance in the second
test. S referees to a solution of the initial test, G to
a general description of how to implement different
structures.

9th Koli Calling International Conference on Computing Education Research

12
vy =05947x + 5 4539
10 4 R2=D,52I]3
* o+ *

L g g 4
i 1
-
%]
E -
= i

e

0 T T T T

o 2 4 5] g 10

Pre-test

Figure 2: Number of completed exercises in the pre-
and post test

an additional indicator that the students may have forgot-
ten the syntax but the more conceptual content and general
competences and skills are more easy to recall.

The design of this study was to use a qualitative research
approach, where we observed what the students did, what
problems they encountered and abstracted these findings.
An alternative way to address the research question (RQz)
could be to statistically check if the students performed bet-
ter after the intervention. Figure 2 plots the students num-
ber of completed exercises in the pre- and post-test. If we
analyse the data using linear regression [27], we can observe
that there is a reasonably strog correlation between the ob-
servations (R? = 0.52), and that the line is well above the
diagonal. This supports the conclusion that the intervention
indeed helped the students recall their programming compe-
tences. However, as noted initially, the number of students
in this study was only ten.

In general, we conclude that the students with the help
they got (one hour of lecturing plus help during the test)
could recall their programming competences. Consequently,
we conclude that it is possible with a limited effort for most
of the students in this study to recall general as well as more
specific programming competences and skills.

The other part of RQ2 “What are the challenges for re-
calling once learnt skills and competences?” is more difficult
to answer.

8. FUTURE WORK

In this study only ten students from one study program
participated. It will be interesting to expand the findings
from this research by involving more students from more
study programs. Fortunately, students from several other
study programs who do not receive further programming
instruction, have taken the course.

Programming is being taught in many different ways, and
there are many different ways of phrasing the intended learn-
ing outcome of introductory programming courses. In order
to obtain more reliable and generalisable results, it would be

92

Koli National Park, Finland, November 2009

interesting to include more universities and colleges in the
research and thus aim for a multi-institutional (and multi-
national) study. As [36] argues, a multi-national, multi-
institutional context, defines a mew interface between com-
puter science education research and computer science edu-
cation practice — hopefully bringing them closer together (p.
S4E-16).

9. CONCLUSION

We have conducted a qualitative investigation of sustain-
ability of programming competence by studying the effect
of recalling programming competence long time after the
educational activity has taken place.

In the pre-test, all students struggled with syntax issues,
but the younger students (measured in time since they had
the introductory course) had significantly less problems than
the older students.

Our qualitative study indicates, not surprisingly, that syn-
tactical issues in general hinder immediate programming
productivity, but more interestingly it also indicate that a
tiny retraining activity and simple guidelines is enough to
recall general as well as more specific programming compe-
tences and overcome syntactical issues.

10. REFERENCES

[1] C. Alphonce and P. Ventura. Object orientation in
csl-cs2 by design. In ITiCSE ’02: Proceedings of the
Tth annual conference on Innovation and technology in
computer science education, pages 70-74. ACM Press,
2002.

[2] M. Anderson, R. Bjork, and E. Bjork. Remembering
can cause forgetting: Retrieval dynamics in long-term
memory. Journal of Experimental Psychology:
Learning, Memory and Cognition, 20(5):1063-1087,
1994.

[3] D. J. Barnes and M. Kifjlling. Objects First With
Java: A Practical Introduction Using Bluej. Pearson,
Essex, United Kingdom, 3rd edition, 2006.

[4] J. Bennedsen. Teaching and learning introductory
programming - a model-based approach. PhD thesis,
University of Oslo, Norway, department of Computer
Science, 2008. accessed May, 2009.

[5] J. Bennedsen and M. Capersen. Model-driven
programming. In J. Bennedsen, M. Caspersen, and
M. Ki£jlling, editors, Reflections on the Teaching of
Programming, pages 116-129. Springer-Verlag, Berlin,
Germany, 2008.

[6] J. Bennedsen and M. E. Caspersen. Assessing process
and product 1£j a practical lab exam for an
introductory programming course. ITALICS,
Innovation in Teaching and Learning in Information
and Computer Sciences, 6(4):183-202, 2007.

[7) J. Bennedsen and M. E. Caspersen. Optimists have
more fun, but do they learn better? i£j on the
influence of emotional and social factors on learning
introductory computer science. Journal of Computer
Science Education, 18(1):1-16, 2008.

[8] A. J. Biamonte. Predicting success in programmer
training. In SIGCPR ’6/: Proceedings of the second
SIGCPR conference on Computer personnel research,
pages 9-12, New York, NY, USA, 1964. ACM Press.

9th Koli Calling International Conference on Computing Education Research

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

R. Bjork. Retrieval practice and the maintenance of
knowledge. In M. Gruneberg, P. Morris, and R. Sykes,
editors, Practical aspects of memory: Current research
and issues, volume 1, pages 396-401. Chichester,
England, 1988.

M. E. Caspersen. Educating Novices in the Skills of
Programming. PhD thesis, Aarhus University,
Department of Computer Science, 2007. accessed May
2009.

M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proceedings of the third
international workshop on Computing education
research, pages 111-122, New York, NY, USA, 2007.
ACM.

G. Cooper and J. Sweller. Effects of schema
acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational
Psychology, 79(4):347-362, 1987.

H. Cooper, J. C. Valentine, K. Charlton, and

A. Melson. The Effects of Modified School Calendars
on Student Achievement and on School and
Community Attitudes. Review of Educational
Research, 73(1):1-52, 2003.

H. Ebbinghaus. i£jber das Gedif jchtnis. Teachers
College, Columbia University, New York, New York,
United States, 1885.

H. Ebbinghaus. Memory: A contribution to
experimental psychology. http:
//psychclassics.yorku.ca/Ebbinghaus/index.htm,
1885. Translated from German by Henry A. Ruger
and Clara E. Bussenius (1913). Last accessed May 14,
2009.

J. T. Gorgone, G. B. Davis, J. S. Valacich, H. Topi,
D. L. Feinstein, and J. Herbert E. Longenecker. Is
2002 - model curriculum and guidelines for
undergraduate degree programs in information
systems. Retrieved June 2009, 2002.

J. T. Gorgone, P. Gray, E. A. Stohr, J. S. Valacich,
and R. T. Wigand. Msis 2006: model curriculum and
guidelines for graduate degree programs in information
systems. SIGCSE Bull., 38(2):121-196, 2006.

M. Guzdial and A. Forte. Design process for a
non-majors computing course. In SIGCSE "05:
Proceedings of the 36th SIGCSE technical symposium
on Computer science education, pages 361-365, New
York, NY, USA, 2005. ACM.

T. B. Hilburn. A top-down approach to teaching an
introductory computer science course. SIGCSE
Bulletin (Association for Computing Machinery,
Special Interest Group on Computer Science
Education), 25(1):58-62, 1993.

E. Howe, M. Thornton, and B. W. Weide.
Components-first approaches to csl/cs2: principles
and practice. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 291-295. ACM Press, 2004.

J. Jain, I. James H. Cross, and D. Hendrix.
Qualitative comparison of systems facilitating data
structure visualization. In ACM-SE 43: Proceedings of
the fourty-third annual Southeast regional conference,
pages 309-314, Kennesaw, Georgia, 2005. ACM Press.

93

(22]

23]

(24]

(25]

(26]

27]

28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

Koli National Park, Finland, November 2009

J. L. Knudsen and O. L. Madsen. Teaching
object-oriented programming is more than teaching
object-oriented programming languages. In S. Gjessing
and K. Nygaard, editors, ECOOP ’88 European
Conference on Object-Oriented Programming, pages
21-40, Berlin, Germany, August 15-17, 1988 1988.
Springer-Verlag.

M. Kolling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Computer
Science Education, 13(4):249-268, 2003.

R. B.-B. Levy, M. Ben-Ari, and P. A. Uronen. The
jeliot 2000 program animation system. Computers €
Education, 40(1):1 — 15, 2003.

E. Loftus. Memory: surprising new insights into how
we remember and why we forget. Addison-Wesley,
Reading, Massachusetts, United States, 1980.

S. Matzko and T. A. Davis. Teaching cs1 with
graphics and c. In ITICSE ’06: Proceedings of the
11th annual SIGCSE conference on Innovation and
technology in computer science education, pages
168-172, New York, NY, USA, 2006. ACM Press.

D. C. Montgomery and E. A. Peck. Introduction to
linear regression analysis. John Wiley, New York, NY,
USA, 1982.

O. Muller, D. Ginat, and B. Haberman.
Pattern-oriented instruction and its influence on
problem decomposition and solution construction.
SIGCSE Bull., 39(3):151-155, 2007.

R. E. Pattis. The i£jprocedures earlyi£j approach in
cs 1: a heresy. In SIGCSE ’93: Proceedings of the
twenty-fourth SIGCSE technical symposium on
Computer science education, pages 122-126. ACM
Press, 1993.

M. M. Reek. A top-down approach to teaching
programming. In SIGCSE ’95: Proceedings of the
twenty-sizth SIGCSE technical symposium on
Computer science education, pages 6-9, New York,
NY, USA, 1995. ACM Press.

S. Reges. Conservatively radical java in csl. In
SIGCSE ’00: Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education,
pages 85-89. ACM Press, 2000.

A. Robins, J. Rountree, and N. Rountree. Learning
and Teaching Programming: A Review and
Discussion. Computer Science Education,
13(2):137-172, 2003.

D. Schacter. The seven sins of memory: Insights from
psychology and cognitive neuroscience. American
Psychologist, 54:182-203, 1999.

A. Schmolitzky. "objects first, interfaces next” or
interfaces before inheritance. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 64-67. ACM Press,
2004.

R. Shackelford, J. H. C. II, G. Davies, J. Impagliazzo,
R. Kamali, R. LeBlanc, B. Lunt, A. McGettrick,

R. Sloan, and H. Topi. The overview report. Accessed
June 2009, 2006.

B. Simon, R. Lister, and S. Fincher.
Multi-institutional computer science educational
research: A review of recent studies of novice

9th Koli Calling International Conference on Computing Education Research

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

understanding. In in Proceedings of the 36th Annual
Frontiers in Education Conference, pages SE412-17,
October 2006.

D. Soldan, J. L. Hughes, J. Impagliazzo,

A. McGettrick, V. P. Nelson, P. K. Srimani, and

M. D. Theys. Computer engineering 2004 - curriculum
guidelines for undergraduate degree programs in
computer engineering. Accessed June 2009, 2004.

J. Stasko, A. Badre, and C. Lewis. Do algorithm
animations assist learning?: an empirical study and
analysis. In CHI ’93: Proceedings of the INTERACT
98 and CHI 93 conference on Human factors in
computing systems, pages 61-66, Amsterdam, The
Netherlands, 1993. ACM.

L. A. Stein. What we swept under the rug: Radically
rethinking csl. Computer Science Education,
8(2):118-129, 1998.

J. Sweller and G. Cooper. The use of worked examples
as a substitute for problem solving in learning algebra.
Cognition and Instruction, 2(1):59-89, 1985.

D. W. Valentine. Cs educational research: a
meta-analysis of sigcse technical symposium
proceedings. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 255-259, New York, NY, USA, 2004.
ACM.

S. Wiedenbeck. Factors affecting the success of
non-majors in learning to program. In ICER ’05:
Proceedings of the 2005 international workshop on
Computing education research, pages 13—24, New
York, NY, USA, 2005. ACM Press.

J. Wixted and E. Ebbesen. Genuine power curves in
forgetting: A quantitative analysis of individual
subject forgetting functions. Memory and Cognition,
25:731-739, 1997.

U. Wolz and E. Koffman. Interactivity in csl & cs2:
bringing back the fun stuff with java. In CCSC 00:
Proceedings of the fifth Annual Consortium for
Computing Sciences in Colleges CCSC: Northeastern
conference, pages 1-3. Consortium for Computing
Sciences in Colleges, 2000.

R. Woodworth. Ezperimental Psychology. Henry Holt,
New York, United States, 1938.

94

Koli National Park, Finland, November 2009

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

Aarhus University Pre-test
Dept of computer science APPENDI X June 3rd 2009

Experiment 1, (Pre-test)Post-test is similar except that another domain and
slightly modified methods are used

1. Createaclass, File, representing afile; the class File is specified File
in the UML-diagram to the right. The three attributes must be
initialized in a constructor (using parameters of appropriate type). String name
The method toString returns a string-representation of afile, e.g. int size

String owner

"testexercises.doc, 267 kb, mec”
String toString()

2. Create a Driver-class containing an exam-method. The method
must be static, have return type void and no parameters.

3. Createthree File-objects, using object references f1, f2 and f3, in the exam-method and print out
these using the toString-method.

Call the observer and demonstrate what you have made so far.

4. Create anew class, Directory, representing a directory in afile-system. The class Directory, and
itsrelation to the File class, is specified in the following UML-diagram:

Directory File

String name % String name
int size

void add(File f) >»| String owner

void remove(File f)
File largestFile() String toString()
List<File> filesOwnedBy(String s)
void printFiles()

5. Program the methods add and remove who respectively adds and removes the File-object f to/from
the Directory-object.

6. Create an object of type Directory in the exam-method in the Driver-class and associate the
aready created File-objects to this object.

7. Program the method largestFile. The method returns the largesfile in the directory (it can be
assumed that the directory is not empty; if two or more files have the same size it is subordinate
which file thet isreturned). Extend the File-class with the necessary get-methods.

8. Usethe method largestFilein the exam-method in the Driver-classtio print out information on the
largest filein adirectory.

Call the observer and demonstrate what you have made so far.

9. Program the method filesOwnedBy. The method must return alist of files owned by s. Extend the
File-class with the necessary get-methods.

10. Program the method printFiles. The method prints out alist of al filesin adirectory arranged by
size.

Call the observer and demonstrate your final solution.

95

