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ABSTRACT 
We present a brief overview of a model for the human cognitive ar-
chitecture and three learning theories based on this model: cognitive 
load theory, cognitive apprenticeship, and worked examples (a key 
area of cognitive skill acquisition). Based on this brief overview we 
argue how an introductory object-oriented programming course is 
designed according to results of cognitive science and educational 
psychology in general and cognitive load theory and cognitive skill 
acquisition in particular; the principal techniques applied are: 
worked examples, scaffolding, faded guidance, cognitive appren-
ticeship, and emphasis of patterns to aid schema creation and im-
prove learning. As part of the presentation of the course, we provide 
a characterization of model-driven programming ⎯the approach we 
have adopted in the introductory programming course. The result is 
an introductory programming course emphasizing a pattern-based 
approach to programming and schema acquisition in order to im-
prove learning. 

Categories and Subject Descriptors 
D2.3 [Software Engineering]: Coding Tools and Techniques – 
object-oriented programming 

K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education. 

General Terms: Design. 

Keywords: Cognition, learning, cognitive load theory, cogni-
tive apprenticeship, worked examples, object-oriented program-
ming, model-driven programming, instructional design, pattern-
based approach to programming education. 

1. INTRODUCTION 
Learning to program is notoriously considered difficult [56]. In 
spite of more than forty years of experience, teaching program-
ming is still considered a major challenge; in fact it is considered 
one of seven grand challenges in computing education [37]. 
A minor but remarkable collection of programming education re-
search from the past ten to fifteen years concerns a pattern-based 
approach to instruction which utilize a shift from emphasis on 
learning the syntactic details of a specific programming language 
to the development of general problem-solving and program-
design skills [19]. The approach was motivated by a shared per-
ception that too many students cannot write reasonable programs 
even after one or two semesters of programming education. The 
approach was also motivated by the fact that “textbooks address 
top-down design by admonishing students to break larger prob-
lems into smaller problems and by giving static examples that il-
lustrate a very dynamic process.” (p. 1). A static program example 
presented in a textbook reveals nothing about the process of de-
veloping the program. Consequently, students get no insight into 
how problems can be broken down and solved. The last motivat-
ing factor was an urge to take pedagogical issues into account: 
“There is indeed little discussion of the teaching of programming 
that relates to pedagogy and almost none that address how the 
process of learning might or should affect instruction.” [19]. This 
paper describes how learning theories may affect instructional de-
sign of a programming course. 
Researchers in cognitive science and educational psychology 
have developed numerous learning theories [23]. In this paper, we 
investigate cognitive load theory, cognitive apprenticeship, and 
the theory of worked examples as the learning theoretic founda-
tion for the instructional design of an introductory programming 
course. According to Valentine [69], many papers dealing with 
CS1/2 topics fall in the so-called Marco Polo category, “I went 
there and I saw this”. Contrary to this, our aim is to provide a rea-
soned, reflective description of the instructional design of an in-
troductory programming course in terms of concepts, techniques, 
and effects of the aforementioned learning theories. 
The learning theories we apply are based on the assumption that 
the human cognitive architecture consists of working memory and 
long-term memory and that cognition takes place through creation 
of schemas stored in long-term memory. The first theory we con-
sider is cognitive load theory [11, 46, 60, 61, 62]. Working mem-
ory has a limited capacity; the fundamental axiom of cognitive 
load theory (based upon the model of cognitive architecture) is 
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that learning outcome is optimized when cognitive load fully util-
izes the capacity of working memory with elements that allow for 
optimal schema acquisition. The second theory we consider is 
cognitive apprenticeship [15, 16]. The theory of cognitive appren-
ticeship holds that masters of a skill often fail to take into account 
the implicit processes involved in carrying out complex skills 
when they are teaching novices. To combat these tendencies, cog-
nitive apprenticeship is designed, among other things, to bring 
these tacit processes into the open, where students can observe, 
enact, and practice them with help from the teacher. The third 
theory we consider is worked examples. Worked examples are 
“instructional devices that provide an expert’s problem solution 
for a learner to study. Worked-examples research is a cognitive-
experimental program that has relevance to classroom instruction 
and the broader educational research community.” [2] (p. 181). 
The paper is structured as follows. Section 2 provides a brief 
overview of related work. Section 3 gives an introduction to cog-
nition and learning including the human cognitive architecture 
and a more detailed presentation of the four learning theories. 
Section 4 is a short characterization of goals and purpose of the 
course under consideration. In section 5 we reflect upon the 
course design according to results of cognitive science and educa-
tional psychology in general and cognitive load theory, cognitive 
apprenticeship, cognitive skill acquisition, and worked examples 
in particular. The last section is the conclusion. 
Major parts of the paper are excerpts of a recent PhD dissertation; 
further details can be found therein [9]. 

2. RELATED WORK 
Others in the computer science community have used cognitive 
load theory as a basis for computing education research [20, 38, 
67]. However, we have no knowledge of the use of cognitive load 
theory for the instructional design of an introductory object-
oriented programming course. 
Tuovinen [67] discuss general principles from cognitive load the-
ory. He is especially interested in the role of prior knowledge, the 
format of materials, and the variability of learning tasks. How-
ever, he does not apply the guidelines in the context of introduc-
tory programming. 
Mead et al. [38] use cognitive load theory to develop anchor 
graphs: “An anchor graph brings together the idea of anchor con-
cept and cognitive load to provide a structure within which course 
layout can be planned” (p. 182). The authors have developed an 
initial anchor graph for OOP focusing on the conceptual frame-
work for object-orientation. 
Muller makes use of cognitive load theory to discuss aspects of a 
programming course. Muller’s primary focus is on algorithmic 
problem solving (though in the context of object-oriented pro-
gramming), and the pattern focus is on algorithmic patterns only 
[41, 42, 43]. 
Upchurch and Sims-Knight [68] describe how they have used 
cognitive apprenticeship in a laboratory component in a software 
engineering course. They focus on software development proc-
esses to “support students in learning the mental habits of skilled 
practitioners”.  The authors use cognitive apprenticeship for 
teaching object-oriented design in a non-programming context 
[59]. 

Chee [76] describes how cognitive apprenticeship is used in tech-
nologically supported learning of Smalltalk programming. Chee 
discusses different aspects of cognitive apprenticeship and how it 
is supported by the smallTALKER learning environment. 
Segal and Ahmad [58] found that worked examples when learning 
programming languages may be seen as being the primary source 
of learning material even when the examples are not fully under-
stood, especially if the exercises bear a similarity with an assign-
ment. 

3. COGNITION AND LEARNING 
An instructional design that does not take the learner into account 
is of limited value. The purpose of this section on cognition is to 
provide a basic conceptual framework for use in the rest of the 
paper to discuss the instructional design of an introductory pro-
gramming course. 
Unfortunately, there is little discussion and research of the teach-
ing of programming that relates to pedagogy, and almost none 
that address how the process of learning might or should affect in-
struction [19]. The report on strategic directions in computer sci-
ence education concurs: “We must view changes in pedagogy as 
opportunistically as we view changes in research specialties” [66]. 
There is, however, a slow but increasing awareness of the benefits 
of applying models and research results from cognitive science 
and learning theory to instructional design. 

3.1 The Human Cognitive Architecture 
We begin by discussing aspects of human cognitive architecture. 
All human learning and work activities rely on two of our mem-
ory systems: working memory and long-term memory and the 
partnership they share. As its name implies, working memory is 
the active partner (as you read this and think about its relevance to 
the paper, it is your working memory that does the processing). 
While in learning mode, new information from the environment is 
processed in working memory to form knowledge structures 
called schemas, which are stored in long-term memory. Schemas 
are memory structures that permit us to treat a large number of in-
formation elements as if they are a single element. New informa-
tion entering working memory must be integrated into pre-
existing schemas in long-term memory. For this to take place, 
relevant schemas in long-term memory must be activated and de-
coded into working memory, where integration takes place. The 
result is an encoding of extended schemas stored in long-term 
memory. The process is known as schema acquisition, and this 
model of the human cognitive architecture is presented in Figure 
1. Our model is adopted from Newell, Rosenbloom, and Laird’s 
Soar model described in [45]. 

3.1.1 Schemas 
Schemas are variously named chunks, plans, templates, or idioms. 
It is tempting to introduce yet another synonym: pattern. How-
ever, to avoid confusion, we shall use the term schema for cogni-
tive memory structures and reserve the term pattern for concrete 
representations of schemas in a specific domain, e.g. program de-
sign (design patterns), algorithm design (elementary patterns and 
algorithmic patterns), or education (pedagogical patterns). We 
shall use chunk as a general concept for schema, pattern, and any 
other organization of information or unit of understanding. 
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Figure 1: A model of the human cognitive architecture 

3.1.2 Chunking 
In his seminal paper [40], George A. Miller observed that the 
number of chunks of information is constant for working memory.  
More precisely, Miller found that working memory has a capacity 
of about “seven plus or minus two” chunks ⎯independent of the 
number of bits per chunk.1 Recoding or chunking is the process of 
reorganizing information from many chunks with few bits of in-
formation to fewer chunks of many bits of information. By re-
coding information, we can make more efficient use of working 
memory and consequently increase the amount of comprehensible 
information. Once learned, these schemas are kept in long-term 
memory and therefore do not affect the cognitive load of working 
memory. 
In contrast to working memory, long-term memory has a massive 
capacity for information storage; however, it is the inert member 
of the memory partnership. All conscious processing takes place 
in working memory, but working memory and long-term memory 
work closely together. When we encode information, we cre-
ate/modify schemas – also the schemas for decoding the encoded 
information. A schema can hold a huge amount of information, 
but is treated as one element of information in working memory. 
Thus, the more complex schemas the more advanced processing 
can take place in working memory. Consequently, the definition 
of learning is that information has successfully been encoded into 
long term memory. 

3.2 Cognitive Load Theory 
Cognitive load theory presumes that we have an unlimited amount 
of long-term memory [30]. Cognitive load theory is a set of learn-
ing principles that deals with the optimal usage of the working 
memory. To be a bit more precise: 

                                                                 

1 Miller’s simple hypothesis is no longer tenable. Chase and 
Ericsson [12] have showed that purposeful training, based upon 
metacognitive mnemonic strategies [1], can triple the apparent 
working memory capacity. However, the fundamental theory of 
chunking and schema acquisition still applies. 

Cognitive load is the load on working memory during problem 
solving, thinking, and reasoning (including perception, memory, 
language, etc.). 
Cognitive load theory is a universal set of learning principles that 
are proven to result in efficient instructional environments as a 
consequence of leveraging human cognitive learning processes 
[14]. 
John Sweller [61] suggests that novices who are unable to recog-
nize a schema to solve a problem must resort to ineffective prob-
lem solving strategies like means-ends analysis [44]. Sweller sug-
gests that problem solving by means-ends analysis requires a rela-
tively large amount of cognitive processing capacity, which may 
not be devoted to schema construction. Instead of problem solv-
ing, Sweller suggests that instructional designers limit cognitive 
load by designing instructional materials like worked-examples. 
We return to these later. 
The fundamental axiom of cognitive load theory (based upon the 
model of cognitive architecture) is that learning outcome is opti-
mized when cognitive load fully utilizes the capacity of working 
memory with elements that allow for optimal schema acquisition. 
Too little as well as too much cognitive load results in low learn-
ing outcome. Routine activities do not advance cognitive devel-
opment (if there is no new information, no encoding/recoding of 
schemas take place), and overwhelming with cognitive load does 
not leave capacity for schema acquisition. Consequently, optimiz-
ing learning is a question of balancing, not minimizing nor 
maximizing, cognitive load (see Figure 2). 

 
Figure 2: Learning outcome as a function of cognitive load 

However, it is a bit more complicated than that, but also more in-
formative. Cognitive load (L) is currently divided into three dis-
joint categories: 
Extraneous cognitive load (E) is caused by instructional proce-
dures that interfere with, rather than contribute to, learning. Ex-
traneous cognitive load might impede learning, since it requires 
working memory resources that can no longer be devoted to cog-
nitive processes associated with learning. Furthermore, cognitive 
resources required by extraneous cognitive load might result in 
an overall cognitive load that exceeds the limits of working 
memory capacity. 
Germane cognitive load (G) is a non-intrinsic cognitive load that 
contributes to, rather than interferes with, learning by supporting 
schema acquisition [64]. Germane cognitive load is imposed by 
adding higher-level cognitive processes that aid schema acquisi-
tion and automation. 
Intrinsic cognitive load (I) is cognitive load intrinsic to the prob-
lem that cannot be reduced without reducing understanding. In-
trinsic cognitive load depends on the relational complexity of the 
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Integration 

decoding 
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(unconscious) 
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to-be-learned content (so-called element interactivity) and the 
learner’s degree of prior knowledge. 

Informally, we can express the relationship between L, E, G, and I 
as:   L   =   E + G + I   . 
In these terms, the challenge of balancing cognitive load for opti-
mal learning becomes a question of minimizing E and maximiz-
ing G. Cognitive load theory have developed several techniques 
(called effects) to help minimize E and maximize G. 
Most of the research in cognitive load theory is focused on identi-
fying so-called effects with associated instructional techniques. In 
the following we present four such effects. 

3.2.1 Worked examples effect 
Alternation of worked examples and problems increase learning 
outcome and transfer (a worked example is a demonstration of 
problem solving by the instructor) [63]. 
A worked example is, as the name suggest, a description of how 
to solve a problem. It focuses on problem states and the steps 
needed for the solution, thereby helping student to form schemas. 
As Sweller et al. conclude: “learners often view worked exam-
ples, rather than explanatory texts, as the primary and most natu-
ral source of learning material” [64] (p. 274). 
The relevance of worked examples to programming education is 
explicitly expressed by several authors: “The worked examples 
literature is particularly relevant to programs of instruction that 
seek to promote skill acquisition, e.g. music, chess, and program-
ming” [2] and “Frequently studied tasks include [...] computer 
programming” [73]. Trafton and Reiser found that college stu-
dents performed better after studying worked examples (when 
learning LISP) than from solving traditional problems [65]. 

3.2.2 Example completion effect 
Worked examples only work if the student studies the example. 
Chi et al. [13] found that ”poor” students only study worked ex-
amples when they resemble conventional problems. Conse-
quently, only using worked examples may be beneficial to “good” 
students but “poor” students may not create schemas. To over-
come this, van Merriënboer and Krammer [72] suggested the use 
of completions problems in the approach to teaching program-
ming called the reading approach: “This approach emphasizes the 
reading, modification and amplification of nontrivial, well-
designed and working programs” (p. 257). Merriënboer have 
made two controlled experiments in order to evaluate the effect of 
using completions problems. One where high school students 
should learn COMAL-80 [70] and one where undergraduate stu-
dents should learn turtle graphics [71]. In both experiments, the 
completion group outperformed the group generating programs 
from scratch. 

3.2.3 Variability effect 
Worked examples with high variability increase cognitive load 
and learning (provided that intrinsic cognitive load is sufficiently 
low); identification of this effect lead to the notion of germane 
cognitive load [47]. 
Using variations of practice is traditionally seen as a positive ele-
ment in an instructional design because it fosters transfer. The ra-
tionale is that students notice the similarities between different 
situations; as Detterman notes: “transfer occurs, when it occurs, 
because of the common elements in the two situations” [18] (p.6). 

Quilici and Mayer [52] demonstrated that students learning statis-
tics in a high variability setting performed better than students in 
a low variability setting. 

3.2.4 Expertise-reversal and guidance-fading effect 
The previous effects were demonstrated using novices. In the late 
1990s, effects were tested under the new conditions of students 
that had developed some expertise. It was found that effects 
gradually disappear as students develop expertise. But it turned to 
be worse than that; it was demonstrated that with further exper-
tise, effects reverse, i.e. the learning outcome was reduced [29]. 
The expertise-reversal effect was used to demonstrate the guid-
ance-fading effect: complete-examples followed by partially com-
pleted examples followed by full problems is superior to any of 
the three used in isolation [54]. 

3.3 Cognitive Apprenticeship 
The theory of cognitive apprenticeship holds that masters of a 
skill often fail to take into account the implicit processes involved 
in carrying out complex skills when teaching novices. To combat 
these tendencies, cognitive apprenticeship is designed, among 
other things, to bring these tacit processes into the open, where 
students can observe, enact, and practice them with help from the 
teacher [15, 16]. 
Collins et al. describe cognitive apprenticeship as follows: “We 
call this rethinking of teaching and learning in school cognitive 
apprenticeship to emphasise two issues. First the method is aimed 
primarily at teaching the processes that experts use to handle 
complex tasks. Where conceptual and factual knowledge are ad-
dressed, cognitive apprenticeship emphasises their uses in solving 
problems and carrying out tasks. Second, our term, cognitive ap-
prenticeship, refers to the learning-through-guided-experience on 
cognitive and meta-cognitive, rather than physical, skills and 
processes […] The externalization of relevant processes and 
methods makes possible such characteristics of apprenticeship as 
its reliance on observation as a primary means of building a con-
ceptual model of a complex target skill.” [15] (p.457). 
According to [16], traditional apprenticeships have four important 
aspects: modelling, scaffolding, fading and coaching. Modelling 
is “supposed to give models of expert performance. This does not 
refer only to an expert's internal cognitive processes, like heuris-
tics and control processes, but also to model the expert's perform-
ance, tacit knowledge as well as motivational and emotional im-
pulses in problem solving” [28] (p.241). Scaffolding is support 
given by the master to the apprentices in order to carry out some 
given task: ”This can range from doing almost the entire task for 
them to giving them occasional hints on what to do next” [16] (p. 
7). Fading is, as the word suggests, the master gradually pulling 
back, leaving the responsibility for performing the task more and 
more to the apprentice. Coaching is the entire process of appren-
ticeship ⎯overseeing the process of learning. The master coaches 
the apprentice in many ways: choosing tasks, giving feedback, 
challenging and encouraging the apprentice, etc. 
Collins, Brown and Holum have described how these aspects can 
be used in a more traditional, school based educational system: 
“In order to translate the model of traditional apprenticeship to 
cognitive apprenticeship, teachers need to: identify the process of 
the task and make them visible to students; situate abstract tasks 
in authentic contexts, so that students understand the relevance of 
the work; and vary the diversity of situations and articulate the 

114



common aspects so that students can transfer what they learn”  
[16] (p. 8). 

3.4 Worked Examples 
Studies of students in a variety of instructional situations have 
shown that students prefer learning from examples rather than 
learning from other forms of instruction (e.g. [13, 33, 51]). Stu-
dents learn more from studying examples than from solving the 
same problems themselves [8, 17]. The relevance of worked ex-
amples to programming education is explicitly expressed: “The 
worked examples literature is particularly relevant to programs of 
instruction that seek to promote skill acquisition, e.g. music, 
chess, and programming” [2]. 
Atkinson et al. [2] emphasize three major categories that influ-
ence learning from worked examples; we present the categories as 
how-to principles of constructing and applying examples in edu-
cation: (1) How to construct examples, (2) How to design lessons 
that include examples, and (3) How to foster students’ thinking 
process when studying examples. 

How to construct examples. Accentuate subgoals. Structuring 
worked examples so that they include cues or beacons that high-
light meaningful chunks of information reflecting a problem’s and 
its solution’s underlying conceptual structure and meaning sig-
nificantly enhances learning [10]. Catrambone demonstrates that 
formatting an example’s solution to accentuate its subgoals can 
assist a learner in actively inducing the example’s underlying goal 
structure, and that this cognitive activity presumably helps pro-
mote induction of deeper structure representing domain princi-
ples, or schemas [2]. Two techniques have particular efficacy: la-
bels (e.g. verbal specification) and visual separation of steps. Ca-
trambone found that it is the presence of a label, not its semantic 
content, which influences subgoal formation. 

How to design lessons that include examples. At least add a 
second example. Educators must decide how many examples to 
provide for each problem type. The number may be constrained 
by external factors, but Reed and Bolstad [53] indicates that one 
example may be insufficient for helping students to induce a us-
able idea, and that the incorporation of a second example, espe-
cially one that is more complex than the first, increases students’ 
learning outcome significantly. Others have found similar results: 
education that helps to develop schemas helps in solving prob-
lems, and multiple examples of the same schema improves learn-
ing and transfer [22, 25]. 
Vary form of problem type. Novices categorize problems accord-
ing to surface features of the problem statement itself, whereas 
experts categorize problems according to features and structural 
similarities of their solution [74]. Variation of form (e.g. cover 
story) can help novices to realize that there is a many-to-one rela-
tionship between form and problem type and vice versa: “when 
students see the same battery of cover stories used across problem 
types, they are more likely to notice that surface features are in-
sufficient to distinguish among problem types” [52]. This princi-
ple is a supplement to the variability-effect of section 3.2.3. 
Alternate examples and practice problems. Lessons that pair each 
worked example with a practice problem and intersperse exam-
ples throughout practice will produce better outcomes than les-
sons in which a blocked series of examples is followed by a 
blocked series of practice problems [65]. 

How to foster students’ thinking process when studying ex-
amples. Induce self-explanations in example-based instruction. 
The message from the large amount of self-explanation literature 
is clear: students who self-explain outperform students who do 
not. Furthermore, there are different forms of self-explanation, 
and students often fail to self-explain successfully; most learners 
self-explain in a passive and superficial way [13, 73]. A good deal 
of self-explanation research has been conducted in the context of 
programming education, e.g. [49, 50]. 
Beware of social incentives. Social incentives rarely work. Due to 
the fact that most learners are passive and superficial self-
explainers, Researchers have made controlled experiments of ini-
tiatives aiming at increasing the quality of degree and quality of 
self-explanation in various social contexts. In one experiment, 
students were assigned the role of teacher. The hypothesis was 
that teaching expectancy would motivate learners to thoroughly 
self-explain worked examples. In another experiment, students 
were paired and told to explain examples to each other. Surpris-
ingly, the result of all these experiment was counter-intuitive: 
Neither teaching expectancy nor peer explanations improved per-
formance; in fact it appeared to hamper learning partly because of 
increased stress and reduced intrinsic motivation on the part of the 
students [2]. 

4. MODEL-BASED PROGRAMMING 
In this section we provide a short characterisation of the notion of 
model-based programming ⎯the approach to object-oriented pro-
gramming applied in the introductory programming course under 
consideration. Furthermore, provide a brief characterisation of the 
course; we describe duration, aims and goals (expressed as ex-
pected outcome), prerequisites, and examination form. 

4.1 Model-Based Programming 
In [34], the object-oriented perspective on programming is de-
fined as follows: “A program execution is regarded as a physical 
model simulating the behaviour of either a real or imaginary part 
of the world.”  The real or imaginary part of the world being mod-
eled is called the referent system, and the program execution con-
stituting the physical model is called the model system. 

 
Figure 3: Programming as a modeling process 

The programming process (initiated by a vision of a new system) 
involves identification of relevant concepts and phenomena in the 
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referent system and representation of these concepts and phenom-
ena in the model system. This process consists of three sub-
processes: abstraction in the referent system, abstraction in the 
model system, and modeling (no particular ordering is imposed 
among the sub-processes). Figure 3 illustrates the programming 
process as a modeling process between a referent system and a 
model system. 
In this course, specification models are expressed as a static class 
model and (informal) functional specifications of the public 
methods of each class of the models. 
We adopt an incremental approach to programming education in 
which novices are provided with worked examples and initially 
do very simple tasks and then gradually do more and more com-
plex tasks, including design-in-the-small by adding new classes 
and methods to an already existing design. In [7], the authors ar-
gue that “traditional approaches to CS1 and CS2 are not in con-
gruence with cognitive learning theory” and provide arguments 
for a reversed order of topics based on Bloom’s classification of 
educational objectives [6]. The title of Buck and Stucki’s paper is 
“Design early considered harmful: Graduated exposure to com-
plexity and structure based on levels of cognitive development”, 
and the message of the paper is that the ordering of topics that 
best matches Bloom’s hierarchy of cognitive development is the 
reverse of the order of activities in the classical software lifecycle 
model. The students first do implementation of methods within an 
existing design; later they move to design; and analysis and re-
quirements are covered in later courses. 
In our current course design, we more or less ignore two of the 
sub-processes described in Figure 3 and restrict ourselves to the 
task of implementing and expanding specification models ex-
pressed as class diagrams, informal functional specifications of 
methods, and test suites. (The students do design-in-the-small, but 
the major emphasis is on implementing designs provided by the 
teacher.) 
When implementing specification models, we identify three inde-
pendent activities: (1) implementation of inter-class structures, i.e. 
relations between classes and methods that maintain these rela-
tions; (2) implementation of intra-class structures, i.e. the internal 
structure and representation of a class; and (3) implementation of 
methods. (3) is logically part of (2), but because different princi-
ples and techniques are involved, we prefer to separate the two. 
The principles and techniques that relate to the three activities are: 
(1) standard coding patterns for the implementation of relations 
between classes; (2) class invariants and techniques for evaluating 
these; and (3) algorithm patterns (e.g. sweep, search, divide-and-
conquer) and loop invariant. 
The loop invariant is a prime software engineering tool that al-
lows understanding each independent part of the loop ⎯initializa-
tion, termination, condition, progressing toward termination⎯ 
without having to look at the other parts [24]. Similarly, the class 
invariant is a prime software engineering tool that allows us to 
separate consideration and evaluation of alternative representa-
tions from implementation of the methods of the class and to im-
plement each method without worrying about the others. And the 
same story goes for class modeling, which is a prime software en-
gineering tool that allows us to separate specification of each 
class from specification of the relationship between classes. The 
fundamental and recurring principle of separation of concerns 

permeates the techniques of all three activities. Figure 4 summa-
rize activities and associated programming techniques for imple-
mentation of specification models. 

Activity Techniques Characteristics 

Imple-
menta-
tion of 
inter-
class 
structure. 

Standard cod-
ing patterns 
for the im-
plementation 
of relations 
between 
classes. 

Separation of the specification of each 
class from specification of relationships 
between classes. 

Standard implementations of relation 
types (aggregation and association, booth 
with varying multiplicities) which sup-
ports schema creation and transfer. 

Imple-
menta-
tion of 
intra-
class 
structure. 

Class invari-
ants and tech-
niques for 
evaluating 
these. 

Separation of consideration and evalua-
tion of alternative representations from 
implementation of the methods of a class. 

Separate implementation of each method 
without worrying about the others. 

Imple-
menta-
tion of 
methods. 

Algorithmic 
patterns and 
loop invari-
ants. 

Standard implementation of algorithm 
patterns (supports schema creation and 
transfer). 

Separation of initialization, termination, 
condition, and progression. 

Figure 4: Activities and associated programming techniques for 
implementation of specification models 

In the next section, we present the instructional design of the in-
troductory programming course where an incremental program-
ming process and practise of these activities and techniques con-
stitutes the primary contents of the course. Increasingly complex 
specification models define the course progression, not constructs 
of the programming language, as is the custom. We focus on 
teaching aspects of implementing inter-class structure. 

4.2 Course Description 
The course Introduction to Programming lasts seven weeks (one 
quarter) with four lecture hours and four practical lab hours with a 
TA per week; the course supposedly takes up one third of the stu-
dents’ time of the quarter. There are weekly mandatory assign-
ments except for the first week of the course. The students are re-
cruited from a large variety of study programs including computer 
science; in week six there is a subject specific project where the 
students work on a simple programming project relevant to their 
primary field of study (e.g. economy, mathematics, multimedia, 
or nano science). The final exam is in week eight or nine. 
The formal description of the course Introduction to Program-
ming is as follows: 
Aims: The participants will after the course have insight into 
principles and techniques for systematic construction of sim-
ple programs and practical experience with implementation of 
specification models using a standard programming language 
and selected standard classes. 
Goals: Upon completion, the participants must be able to: 
• apply fundamental constructs of a common programming 

language. 
• identify and explain the architecture of simple programs. 
• identify and explain the semantics of simple specification 

models. 
• implement simple specification models in a common pro-

gramming language 
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• apply standard classes for implementation tasks. 
Prerequisites: None. 
Evaluation: Each student is evaluated through a practical ex-
amination where the student alone solves a concrete pro-
gramming task at a computer. 
For more details about the course and examination form, see [4]. 

4.3 An Overview of a Concrete Course 
In the course Introduction to Programming, we focus on teaching 
aspects of implementing classes, inter-class structure, and meth-
ods with loops using the simple standard algorithmic pattern, 
sweep (iteration through a data set). The course is organized in six 
phases: (1) Getting starter, (2) Learning the basics, (3) Conceptual 
framework and coding recipes, (4) Programming method, (5) Sub-
ject specific assignment, and (6) Practice. The focus, goal and 
contents of the six phases are captured in Figure 5. In the table, 
we use {method, class}{use, extend, create} as a terminology of 
progression of programming assignments; the terminology is dis-
cussed further in section 5.1.1. 
In the next section we present details of the instructional design of 
the third phase, Conceptual framework and coding recipes. 
 

Phase Week(s) Goal/Content 

1 1.5 Getting started (method use) 
Overview of fundamental concepts. Learning 
the basics of the IDE. 

2 1.5 Learning the basics (method extend and 
method create) 
Class (access modifiers), object 
State (type, variable, value, integer) 
Behaviour (instantiation, constructor, method 
declaration, signature, formal parameter, return 
type, method body assignment, invoking a 
method, actual parameter, returning a value) 
Control structures (sequence, iteration) 

3 1 Conceptual framework and coding recipes 
(class extend) 
Control structure (selection, more iteration) 
Data structure (Collections) 
Class relationship (aggregation, association) 
Schemas for implementing structure (class re-
lations) 

4 1 Programming method (class extend and class 
create) 
The mañana principle 
Schemas for implementing functionality (how 
and in which order) 

5 1.5 Subject specific assignments (class create) 
Practice on harder and more challenging tasks 
(problems) 
Motivation: tasks/problems are picked from the 
domain of the students’ major subject (bio-
informatics, business, chemistry, computer sci-
ence, economy, geology, math, multimedia, 
nano science, etc.) 

6 0.5+ Practice (class create) 
Achieve routine in solving standard tasks 
(UML2Java) 

Figure 5: Sub-goals and progression 

The learning theories described in section three plays a major role 
in the overall instructional design. Worked examples (section 
3.2.1) and guidance fading (section 3.2.4) are used throughout the 
course. In phase 1 and 2, the emphasis is on reducing extraneous 
cognitive load while phase 3 and 4 focus on germane cognitive 
load through a pattern-based approach to programming and ex-
plicit teaching of the process of programming. In phase 2, 3, and 
4, we focus on revealing the programming process by applying 
the theory of cognitive apprenticeship. In phase 6 we focus on 
cognitive skill acquisition and automation through repeated prac-
tice of programming patterns. 
The detailed instructional design of each phase is also based upon 
the learning theories; in the next section we unfold the detailed in-
structional design of phase 3. 

5. INSTRUCTIONAL DESIGN 
Section 5.1 presents a few fundamental principles of program-
ming education that guides us in organizing a programming 
course. In section 5.2, we discuss organization of a small part of 
an introductory programming course. In doing so, we apply re-
sults of cognitive science and educational psychology in general 
and cognitive load theory in particular to ensure an instructional 
design that balances the cognitive load in order to optimize learn-
ing. In particular, we focus on programming patterns ⎯the con-
crete representations of schemas in program and algorithm design. 

5.1 Principles of Programming Education 
In this section we briefly present four fundamental principles we 
use to guide the instructional design of programming courses. 
The principles are (1) Consume before produce, (2) Worked, ex-
emplary examples, and (3) Reinforce patterns and conceptual 
frameworks. We lean on more principles, but these three are the 
ones that most directly relates to the learning theories of section 3. 

5.1.1 Consume before produce 
In [48], the author introduces the call before write approach to 
teaching introductory programming, arguing that it “allows stu-
dents to write more interesting programs early in the course and it 
familiarizes them with the process of writing programs that call 
subprograms; so it is more natural for them to continue writing 
well structured programs after they learn how to write their own 
subprograms”. Pattis points out that the “call before write” ap-
proach requires the linguistic ability to cleanly separate a subpro-
gram’s specification from its implementation. 
In [57], the author briefly mentions the notion of consuming be-
fore producing by providing three specific examples. One exam-
ple is: “BlueJ allows beginning with an object “system” with just 
one class where students just interactively use instances of this 
class (they consume the notion of interacting with an object via its 
interface). Producing the possibility of interacting with an object, 
on the other hand, requires more knowledge about class internals 
and should thus be done after the principle of interaction with ob-
jects is well understood”. 
We rely heavily upon the principle of Consume-before-Produce. 
The principle is applicable to a wide number of topics, e.g. code, 
specifications, class libraries, design patterns, and frameworks. 
We employ the principle with respect to the way students write 
code at three levels of abstractions: method level, class level, and 
class model level as follows: (1) Use methods (as indicated above, 
BlueJ allows interactive method invocation on objects without 
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writing any code). At this early stage, students can perform ex-
periments with objects in order to investigate the behaviour and 
determine the actual specification of a method. (2) Modify meth-
ods by altering statements or expressions in existing methods. (3) 
Extend methods by writing additional code in existing methods. 
(4) Create methods by adding new methods to an existing class. 
This may also be characterised as extend class. (5) Create class 
by adding new classes to an existing model. This may also be 
characterised as extend model. (6) Create model by building a 
new model for a system to be implemented. 

5.1.2 Worked, exemplary examples 
Examples are considered very important for learning in general. 
Novice programmers even think they learn programming best 
from examples [32]. However, computer science educators use 
many examples that might do more harm than good (see for ex-
ample [26, 27, 35, 75]). It is therefore mandatory that these exam-
ples are not only correct but can also serve as a template for 
“good” design and style in any reasonable aspect. 

Exemplary can mean many things depending on purpose, perspec-
tive, and point of view. Our concern is to address the topic from a 
didactical/pedagogical perspective. 

All examples must follow all the definitions, and “rules” we have 
introduced, i.e. we must say as we do and do as we say. This re-
quires very careful planning and development. According to our 
own experience, shortcuts or examples constructed “on-the-fly” 
will almost certainly introduce unintended problems. 

Consequently, follow accepted principles, rules and guidelines. 
However, make sure to keep the focus on OOP novices. Many 
principles, rules, and guidelines are targeted toward professionals. 
They might not be applicable or even meaningful for novices. Ac-
cepted principles, rules, and guidelines encompass (1) general 
coding guidelines and style, like naming of identifiers, indenta-
tion, categorization of methods, like accessors, mutators, etc.; (2) 
common principles, like the ones summarized in [36, 39]; and (3) 
object-oriented design heuristics, like the ones described in [21, 
55]. 

Finally, it pays off to get to know your students to be able to give 
them relevant and challenging examples. In courses such as ours, 
where students come from a large number of study programmes, 
it is vital to ensure that the examples are meaningful to all. With 
help from faculty members of other departments, we have devel-
oped subject specific assignments targeted at students from all 
study programmes that officially include the introductory pro-
gramming course. 

5.1.3 Reinforce patterns and conceptual frameworks 
The fundamental motivation for a pattern-based approach to 
teaching programming is that patterns capture chunks of pro-
gramming knowledge. According to cognitive science and educa-
tional psychology, explicit teaching of patterns reinforces schema 
acquisition as long as the total cognitive load is “controlled” (see 
section 3). 
We reinforce patterns at different levels of abstraction including 
elementary patterns, algorithm patterns, and design patterns, but 
equally important, we provide a conceptual framework for object-
orientation that qualifies modeling and programming and in-
creases transfer [31, 34] (ch.18). Furthermore, we stress coding 

patterns for standard relations between classes as we shall see in 
the next section. 

5.2 Conceptual Frameworks and Patterns 
In this phase of the course (week 3-4) we introduce a subset of the 
conceptual framework for object-orientation developed by Knud-
sen et al. [31, 34]. According to Madsen et al., the object-oriented 
perspective on programming is defined as follows: “A program 
execution is regarded as a physical model simulating the behav-
iour of either a real or an imaginary part of the world”. From the 
object-oriented perspective, concepts are modeled as classes and 
phenomena as objects. A basic understanding of phenomena, con-
cepts, and abstraction forms the basis of the conceptual frame-
work that provides well-defined characterizations of classifica-
tion, aggregation (decomposition), and generalisation (specialisa-
tion) as ways of forming concepts from phenomena or other con-
cepts. Object-oriented programming languages support these ab-
stractions mechanisms in different but similar ways; thus, the 
conceptual framework provides knowledge and understanding 
that carries across different object-oriented programming lan-
guages. 

The conceptual framework provides guidance for a disciplined 
use of components in modeling languages (e.g. UML) and ab-
straction mechanisms in object-oriented languages. We supple-
ment this guidance with coding recipes for the fundamental types 
of relations between concepts (classes): generalisa-
tion/specialisation, aggregation/decomposition, and association. 
In popular terms, generalisation is known as is-a, aggregation as 
has-a, and association as x-a for any verb x different from is and 
has. 

5.2.1 Model patterns 
In this phase, the programming tasks are described by class mod-
els such as ClockDisplay and NumberDisplay (a ClockDisplay 
with two NumberDisplay objects), DieCup and Die (a DieCup 
with two Die objects and later a DieCup with an arbitrary number 
of Die objects, a Notebook with many Note objects (each with 
many Keyword objects associated), a Playlist with associated 
Track objects (each with associated Picture objects), Account 
with Transaction objects, etc. The generic models the students 
learn to implement in this phase are sketched in Figure 6. 

 
Figure 6: Generic class models 

A typical sequence of worked examples and problems is as fol-
lows: (1) a worked example is introduced in a lecture (implemen-
tation of a simple class model through live programming) and (2) 
a supplement in the form of a video presentation of the same or a 
similar example (screen capture of narrated programming session, 

* 
A B 

* 
A B 
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A B 1) 

2) 

3) 
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see [5]), (3) a lab-assignment, (4) another assignment for the class 
later the same week, and (5) a mandatory assignment in the fol-
lowing week. This scheme repeats (partially overlapping) in the 
following week with a new sequence of examples of increased 
complexity. In the following we present two concrete examples of 
such sequences of examples and problems. 

Example A: (A1) In a lecture we present an example of a pro-
gram consisting of two classes: ClockDisplay and NumberDis-
play. A ClockDisplay has two NumberDisplays (showing hours 
and seconds respectively). This example is from chapter 3 in Bar-
nes and Kölling’s textbook [3]. 

(A2) A video presentation of a partial development of the exam-
ple with ClockDisplay and NumberDisplay is made available. 

(A3) A1 and A2 are followed by a lab-exercise where the students 
interact with, modify, and extend the clock example. 

(A4) A follow-up exercise where the students are provided with a 
partial implementation of a project with two classes: DieCup and 
Die.  In this example a die cup always contains two die. To the 
students, this is a completely different example than the clock ex-
ample; however, structurally they are identical (isomorphic), and 
the students realize this ⎯sooner or later. 

(A5) In the following week we give a mandatory assignment 
where the students implement a project modeling a parent relation 
between Person objects. Although this is a recursive relation (i.e. 
a relation from a class to itself), it is conceptually and structurally 
similar to the relation between ClockDisplay and NumberDisplay 
and to the relation between DieCup and Die. The difference, of 
course, is that there is only one class in play. 

In a lecture following this sequence of activities related to exam-
ples of the aggregation-with-multiplicity-2 relation, we reveal the 
structural similarity between the three examples. Some students 
have already realized the similarity, but during the lecture, almost 
all of the students realize that the seemingly very different exam-
ples actually have a lot in common beneath the surface. This re-
alization results in valuable schema acquisition and construction 
of more general competencies and knowledge. 

Example B: (B1) In a lecture we present an example of a program 
with two classes: Playlist and Track, a Playlist object may be as-
sociated with any number of Track objects (a 0-many associa-
tion). 

(B2) A video presentation of a partial development of a similar 
example (Account and Transaction) is made available. 

(B3) B1 and B2 are followed by a lab-exercise where the students 
interact with, modify, and extend both examples. 

(B4) We provide a follow-up exercise where the students extend 
the Playlist-Track example by adding a new class representing a 
Picture. A Track object may have any number of Picture objects 
associated; (the idea is that the pictures associated to a track are 
shown in turns while the track is playing). 

(B5) Again we give a mandatory assignment where the students 
implement a system of three classes: Notebook, Note, and Key-
word. A notebook may contain any number of notes and a note 
may have any number of keywords associated (allowing notes to 
be searched and categorised by keyword). 

The structural similarity is revealed to the students in a following 
lecture. In a follow-up exercise, the students are asked to develop 
generic coding recipes for the zero-to-many association between 
two classes. For example, the standard implementation of a zero-
to-many association is to declare a collection object at the origin 
of the association and two methods to add/remove elements 
to/from the association (see Figure 7, compare with Figure 6-3). 

 
class B { ... } 
class A { 
  ... 
  private List<B> bs; 
  public void add(B b) { bs.add(b); } 
  public void remove(B b) { bs.remove(b); } 
} 

Figure 7: Pattern for implementation of zero-to-many association 

These activities strongly support schema acquisition and hence 
transfer of programming competencies. 
As is evident from example A and B, worked examples, example 
completion, and guidance fading play a key role in the organiza-
tion of the student’s learning process in phase 3. In activity 3, the 
students interact with, modify, and extend the example from ac-
tivity 1 and 2. In activity 4, the students complete a new but simi-
lar example. In activity 5, the students implement a specification 
model. The progression through the five activities illustrates how 
the teacher’s guidance fades. 
Schema acquisition is supported by variation of cover stories of 
structurally similar programming tasks (e.g. Playlist-Track and 
Account-Transaction). 
Cognitive apprenticeship occurs in activity 1 and 2 where live 
programming in class and videos illustrating the programming 
process helps revealing the tacit knowledge and implicit processes 
involved in program development. 
The pattern-based approach to programming reveals standard so-
lutions to recurring class structures and hence supports the goal of 
maximizing germane cognitive load in order to acquire the rele-
vant cognitive schemas. 
The pattern-based approach is also utilized with respect to algo-
rithmic structures; this aspect is described in the following. 

5.2.2 Algorithmic Patterns 
Sweeping through a data set is a standard algorithmic pattern; ze-
ro-to-many associations invite methods with a select-like func-
tionality, e.g. findOne or findAll associated object(s) satisfying a 
certain predicate. In the case of Account-Transaction it could be 
all transactions within a certain timeframe or all transactions of at 
least a certain amount. In the case of Playlist-Track it could be all 
tracks with a certain rating or (one of) the most popular track. 
Through several similar examples, we urge the students to iden-
tify algorithmic patterns to solve these kinds of standard problems 
(inductive); occasionally we provide the patterns up-front (deduc-
tive). Figure 8 shows the two algorithmic patterns for finding one 
or all associated objects satisfying a certain criteria (of a zero-to-
many association). 
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class B { ... } 
class A { 
  ... 
  private List<B> bs; 
  public B findOneX() { 
    B res= bs.get(0); 
    for ( B b : bs ) { 
      if ( ”b is a better X than res” ) { 
        res= b; 
    } } 
    return res; 
  } 
  public List<B> findAllX() { 
    List<B> res= new ArrayList<B>(); 
    for ( B b : bs ) { 
      if ( ”b satisfies criteria X” ) { 
        res.add(b); 
    } } 
    return res; 
  } 
  ... 
} 
Figure 8: Patterns for implementing findOne and findAll 

Worked examples that the students complete before the embark 
on similar problems, and the faded guidance as described in ex-
ample A and B above help focus on the essential aspects of a pro-
gramming task, and the specific details of the programming lan-
guage becomes means to an end instead of a goal in itself. 

6. CONCLUSIONS AND FUTURE WORK 
We have provided an overview of selected learning theories: cog-
nitive load theory, cognitive apprenticeship, and worked examples 
(a key area of cognitive skill acquisition) and we have described 
the instructional design of a model-based, object-oriented intro-
ductory programming course according to effects and guidelines 
of the aforementioned learning theories. The particular effects and 
techniques applied are: worked examples, scaffolding, faded guid-
ance, cognitive apprenticeship, and emphasis of patterns to aid 
schema creation and improve learning. 
We have presented an overview of the instructional design of the 
complete course and argued for the design according to the learn-
ing theories. Furthermore, we have provided a detailed presenta-
tion of one of six phases of the course where we discuss the appli-
cation of cognitive load theory, cognitive apprenticeship, and 
worked examples in a pattern-based approach to programming 
education. 
The instructional design described in this paper has been success-
fully used for more than four years with more than 400 students 
per year. We have not yet conducted any formal evaluation of the 
instructional design. It would be relevant to do so, e.g. by running 
controlled experiments and by applying the design at other insti-
tutions thus providing the opportunity for multi-institutional and 
multinational studies of the effect of (elements of) the instruc-
tional design. So far, we have indications from colleagues at uni-
versities in Israel, U.K. and U.S.A. expressing interest in testing 
(elements of) our instructional design. 
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