
Instructional Design of a Programming
Course ⎯ A Learning Theoretic Approach

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200, Aarhus N

Denmark
mec@daimi.au.dk

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

ABSTRACT
We present a brief overview of a model for the human cognitive ar-
chitecture and three learning theories based on this model: cognitive
load theory, cognitive apprenticeship, and worked examples (a key
area of cognitive skill acquisition). Based on this brief overview we
argue how an introductory object-oriented programming course is
designed according to results of cognitive science and educational
psychology in general and cognitive load theory and cognitive skill
acquisition in particular; the principal techniques applied are:
worked examples, scaffolding, faded guidance, cognitive appren-
ticeship, and emphasis of patterns to aid schema creation and im-
prove learning. As part of the presentation of the course, we provide
a characterization of model-driven programming ⎯the approach we
have adopted in the introductory programming course. The result is
an introductory programming course emphasizing a pattern-based
approach to programming and schema acquisition in order to im-
prove learning.

Categories and Subject Descriptors
D2.3 [Software Engineering]: Coding Tools and Techniques –
object-oriented programming

K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education.

General Terms: Design.

Keywords: Cognition, learning, cognitive load theory, cogni-
tive apprenticeship, worked examples, object-oriented program-
ming, model-driven programming, instructional design, pattern-
based approach to programming education.

1. INTRODUCTION
Learning to program is notoriously considered difficult [56]. In
spite of more than forty years of experience, teaching program-
ming is still considered a major challenge; in fact it is considered
one of seven grand challenges in computing education [37].
A minor but remarkable collection of programming education re-
search from the past ten to fifteen years concerns a pattern-based
approach to instruction which utilize a shift from emphasis on
learning the syntactic details of a specific programming language
to the development of general problem-solving and program-
design skills [19]. The approach was motivated by a shared per-
ception that too many students cannot write reasonable programs
even after one or two semesters of programming education. The
approach was also motivated by the fact that “textbooks address
top-down design by admonishing students to break larger prob-
lems into smaller problems and by giving static examples that il-
lustrate a very dynamic process.” (p. 1). A static program example
presented in a textbook reveals nothing about the process of de-
veloping the program. Consequently, students get no insight into
how problems can be broken down and solved. The last motivat-
ing factor was an urge to take pedagogical issues into account:
“There is indeed little discussion of the teaching of programming
that relates to pedagogy and almost none that address how the
process of learning might or should affect instruction.” [19]. This
paper describes how learning theories may affect instructional de-
sign of a programming course.
Researchers in cognitive science and educational psychology
have developed numerous learning theories [23]. In this paper, we
investigate cognitive load theory, cognitive apprenticeship, and
the theory of worked examples as the learning theoretic founda-
tion for the instructional design of an introductory programming
course. According to Valentine [69], many papers dealing with
CS1/2 topics fall in the so-called Marco Polo category, “I went
there and I saw this”. Contrary to this, our aim is to provide a rea-
soned, reflective description of the instructional design of an in-
troductory programming course in terms of concepts, techniques,
and effects of the aforementioned learning theories.
The learning theories we apply are based on the assumption that
the human cognitive architecture consists of working memory and
long-term memory and that cognition takes place through creation
of schemas stored in long-term memory. The first theory we con-
sider is cognitive load theory [11, 46, 60, 61, 62]. Working mem-
ory has a limited capacity; the fundamental axiom of cognitive
load theory (based upon the model of cognitive architecture) is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’07, September 15–16, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-841-1/07/0009...$5.00.

111

that learning outcome is optimized when cognitive load fully util-
izes the capacity of working memory with elements that allow for
optimal schema acquisition. The second theory we consider is
cognitive apprenticeship [15, 16]. The theory of cognitive appren-
ticeship holds that masters of a skill often fail to take into account
the implicit processes involved in carrying out complex skills
when they are teaching novices. To combat these tendencies, cog-
nitive apprenticeship is designed, among other things, to bring
these tacit processes into the open, where students can observe,
enact, and practice them with help from the teacher. The third
theory we consider is worked examples. Worked examples are
“instructional devices that provide an expert’s problem solution
for a learner to study. Worked-examples research is a cognitive-
experimental program that has relevance to classroom instruction
and the broader educational research community.” [2] (p. 181).
The paper is structured as follows. Section 2 provides a brief
overview of related work. Section 3 gives an introduction to cog-
nition and learning including the human cognitive architecture
and a more detailed presentation of the four learning theories.
Section 4 is a short characterization of goals and purpose of the
course under consideration. In section 5 we reflect upon the
course design according to results of cognitive science and educa-
tional psychology in general and cognitive load theory, cognitive
apprenticeship, cognitive skill acquisition, and worked examples
in particular. The last section is the conclusion.
Major parts of the paper are excerpts of a recent PhD dissertation;
further details can be found therein [9].

2. RELATED WORK
Others in the computer science community have used cognitive
load theory as a basis for computing education research [20, 38,
67]. However, we have no knowledge of the use of cognitive load
theory for the instructional design of an introductory object-
oriented programming course.
Tuovinen [67] discuss general principles from cognitive load the-
ory. He is especially interested in the role of prior knowledge, the
format of materials, and the variability of learning tasks. How-
ever, he does not apply the guidelines in the context of introduc-
tory programming.
Mead et al. [38] use cognitive load theory to develop anchor
graphs: “An anchor graph brings together the idea of anchor con-
cept and cognitive load to provide a structure within which course
layout can be planned” (p. 182). The authors have developed an
initial anchor graph for OOP focusing on the conceptual frame-
work for object-orientation.
Muller makes use of cognitive load theory to discuss aspects of a
programming course. Muller’s primary focus is on algorithmic
problem solving (though in the context of object-oriented pro-
gramming), and the pattern focus is on algorithmic patterns only
[41, 42, 43].
Upchurch and Sims-Knight [68] describe how they have used
cognitive apprenticeship in a laboratory component in a software
engineering course. They focus on software development proc-
esses to “support students in learning the mental habits of skilled
practitioners”. The authors use cognitive apprenticeship for
teaching object-oriented design in a non-programming context
[59].

Chee [76] describes how cognitive apprenticeship is used in tech-
nologically supported learning of Smalltalk programming. Chee
discusses different aspects of cognitive apprenticeship and how it
is supported by the smallTALKER learning environment.
Segal and Ahmad [58] found that worked examples when learning
programming languages may be seen as being the primary source
of learning material even when the examples are not fully under-
stood, especially if the exercises bear a similarity with an assign-
ment.

3. COGNITION AND LEARNING
An instructional design that does not take the learner into account
is of limited value. The purpose of this section on cognition is to
provide a basic conceptual framework for use in the rest of the
paper to discuss the instructional design of an introductory pro-
gramming course.
Unfortunately, there is little discussion and research of the teach-
ing of programming that relates to pedagogy, and almost none
that address how the process of learning might or should affect in-
struction [19]. The report on strategic directions in computer sci-
ence education concurs: “We must view changes in pedagogy as
opportunistically as we view changes in research specialties” [66].
There is, however, a slow but increasing awareness of the benefits
of applying models and research results from cognitive science
and learning theory to instructional design.

3.1 The Human Cognitive Architecture
We begin by discussing aspects of human cognitive architecture.
All human learning and work activities rely on two of our mem-
ory systems: working memory and long-term memory and the
partnership they share. As its name implies, working memory is
the active partner (as you read this and think about its relevance to
the paper, it is your working memory that does the processing).
While in learning mode, new information from the environment is
processed in working memory to form knowledge structures
called schemas, which are stored in long-term memory. Schemas
are memory structures that permit us to treat a large number of in-
formation elements as if they are a single element. New informa-
tion entering working memory must be integrated into pre-
existing schemas in long-term memory. For this to take place,
relevant schemas in long-term memory must be activated and de-
coded into working memory, where integration takes place. The
result is an encoding of extended schemas stored in long-term
memory. The process is known as schema acquisition, and this
model of the human cognitive architecture is presented in Figure
1. Our model is adopted from Newell, Rosenbloom, and Laird’s
Soar model described in [45].

3.1.1 Schemas
Schemas are variously named chunks, plans, templates, or idioms.
It is tempting to introduce yet another synonym: pattern. How-
ever, to avoid confusion, we shall use the term schema for cogni-
tive memory structures and reserve the term pattern for concrete
representations of schemas in a specific domain, e.g. program de-
sign (design patterns), algorithm design (elementary patterns and
algorithmic patterns), or education (pedagogical patterns). We
shall use chunk as a general concept for schema, pattern, and any
other organization of information or unit of understanding.

112

Figure 1: A model of the human cognitive architecture

3.1.2 Chunking
In his seminal paper [40], George A. Miller observed that the
number of chunks of information is constant for working memory.
More precisely, Miller found that working memory has a capacity
of about “seven plus or minus two” chunks ⎯independent of the
number of bits per chunk.1 Recoding or chunking is the process of
reorganizing information from many chunks with few bits of in-
formation to fewer chunks of many bits of information. By re-
coding information, we can make more efficient use of working
memory and consequently increase the amount of comprehensible
information. Once learned, these schemas are kept in long-term
memory and therefore do not affect the cognitive load of working
memory.
In contrast to working memory, long-term memory has a massive
capacity for information storage; however, it is the inert member
of the memory partnership. All conscious processing takes place
in working memory, but working memory and long-term memory
work closely together. When we encode information, we cre-
ate/modify schemas – also the schemas for decoding the encoded
information. A schema can hold a huge amount of information,
but is treated as one element of information in working memory.
Thus, the more complex schemas the more advanced processing
can take place in working memory. Consequently, the definition
of learning is that information has successfully been encoded into
long term memory.

3.2 Cognitive Load Theory
Cognitive load theory presumes that we have an unlimited amount
of long-term memory [30]. Cognitive load theory is a set of learn-
ing principles that deals with the optimal usage of the working
memory. To be a bit more precise:

1 Miller’s simple hypothesis is no longer tenable. Chase and
Ericsson [12] have showed that purposeful training, based upon
metacognitive mnemonic strategies [1], can triple the apparent
working memory capacity. However, the fundamental theory of
chunking and schema acquisition still applies.

Cognitive load is the load on working memory during problem
solving, thinking, and reasoning (including perception, memory,
language, etc.).
Cognitive load theory is a universal set of learning principles that
are proven to result in efficient instructional environments as a
consequence of leveraging human cognitive learning processes
[14].
John Sweller [61] suggests that novices who are unable to recog-
nize a schema to solve a problem must resort to ineffective prob-
lem solving strategies like means-ends analysis [44]. Sweller sug-
gests that problem solving by means-ends analysis requires a rela-
tively large amount of cognitive processing capacity, which may
not be devoted to schema construction. Instead of problem solv-
ing, Sweller suggests that instructional designers limit cognitive
load by designing instructional materials like worked-examples.
We return to these later.
The fundamental axiom of cognitive load theory (based upon the
model of cognitive architecture) is that learning outcome is opti-
mized when cognitive load fully utilizes the capacity of working
memory with elements that allow for optimal schema acquisition.
Too little as well as too much cognitive load results in low learn-
ing outcome. Routine activities do not advance cognitive devel-
opment (if there is no new information, no encoding/recoding of
schemas take place), and overwhelming with cognitive load does
not leave capacity for schema acquisition. Consequently, optimiz-
ing learning is a question of balancing, not minimizing nor
maximizing, cognitive load (see Figure 2).

Figure 2: Learning outcome as a function of cognitive load

However, it is a bit more complicated than that, but also more in-
formative. Cognitive load (L) is currently divided into three dis-
joint categories:
Extraneous cognitive load (E) is caused by instructional proce-
dures that interfere with, rather than contribute to, learning. Ex-
traneous cognitive load might impede learning, since it requires
working memory resources that can no longer be devoted to cog-
nitive processes associated with learning. Furthermore, cognitive
resources required by extraneous cognitive load might result in
an overall cognitive load that exceeds the limits of working
memory capacity.
Germane cognitive load (G) is a non-intrinsic cognitive load that
contributes to, rather than interferes with, learning by supporting
schema acquisition [64]. Germane cognitive load is imposed by
adding higher-level cognitive processes that aid schema acquisi-
tion and automation.
Intrinsic cognitive load (I) is cognitive load intrinsic to the prob-
lem that cannot be reduced without reducing understanding. In-
trinsic cognitive load depends on the relational complexity of the

Long-term memory:
Schemas

Working memory:
Integration

decoding

recoding/chunking
(unconscious)

decision
(conscious)

Senses Muscles

Environment

encoding

Learning outcome

Cognitive load

113

to-be-learned content (so-called element interactivity) and the
learner’s degree of prior knowledge.

Informally, we can express the relationship between L, E, G, and I
as: L = E + G + I .
In these terms, the challenge of balancing cognitive load for opti-
mal learning becomes a question of minimizing E and maximiz-
ing G. Cognitive load theory have developed several techniques
(called effects) to help minimize E and maximize G.
Most of the research in cognitive load theory is focused on identi-
fying so-called effects with associated instructional techniques. In
the following we present four such effects.

3.2.1 Worked examples effect
Alternation of worked examples and problems increase learning
outcome and transfer (a worked example is a demonstration of
problem solving by the instructor) [63].
A worked example is, as the name suggest, a description of how
to solve a problem. It focuses on problem states and the steps
needed for the solution, thereby helping student to form schemas.
As Sweller et al. conclude: “learners often view worked exam-
ples, rather than explanatory texts, as the primary and most natu-
ral source of learning material” [64] (p. 274).
The relevance of worked examples to programming education is
explicitly expressed by several authors: “The worked examples
literature is particularly relevant to programs of instruction that
seek to promote skill acquisition, e.g. music, chess, and program-
ming” [2] and “Frequently studied tasks include [...] computer
programming” [73]. Trafton and Reiser found that college stu-
dents performed better after studying worked examples (when
learning LISP) than from solving traditional problems [65].

3.2.2 Example completion effect
Worked examples only work if the student studies the example.
Chi et al. [13] found that ”poor” students only study worked ex-
amples when they resemble conventional problems. Conse-
quently, only using worked examples may be beneficial to “good”
students but “poor” students may not create schemas. To over-
come this, van Merriënboer and Krammer [72] suggested the use
of completions problems in the approach to teaching program-
ming called the reading approach: “This approach emphasizes the
reading, modification and amplification of nontrivial, well-
designed and working programs” (p. 257). Merriënboer have
made two controlled experiments in order to evaluate the effect of
using completions problems. One where high school students
should learn COMAL-80 [70] and one where undergraduate stu-
dents should learn turtle graphics [71]. In both experiments, the
completion group outperformed the group generating programs
from scratch.

3.2.3 Variability effect
Worked examples with high variability increase cognitive load
and learning (provided that intrinsic cognitive load is sufficiently
low); identification of this effect lead to the notion of germane
cognitive load [47].
Using variations of practice is traditionally seen as a positive ele-
ment in an instructional design because it fosters transfer. The ra-
tionale is that students notice the similarities between different
situations; as Detterman notes: “transfer occurs, when it occurs,
because of the common elements in the two situations” [18] (p.6).

Quilici and Mayer [52] demonstrated that students learning statis-
tics in a high variability setting performed better than students in
a low variability setting.

3.2.4 Expertise-reversal and guidance-fading effect
The previous effects were demonstrated using novices. In the late
1990s, effects were tested under the new conditions of students
that had developed some expertise. It was found that effects
gradually disappear as students develop expertise. But it turned to
be worse than that; it was demonstrated that with further exper-
tise, effects reverse, i.e. the learning outcome was reduced [29].
The expertise-reversal effect was used to demonstrate the guid-
ance-fading effect: complete-examples followed by partially com-
pleted examples followed by full problems is superior to any of
the three used in isolation [54].

3.3 Cognitive Apprenticeship
The theory of cognitive apprenticeship holds that masters of a
skill often fail to take into account the implicit processes involved
in carrying out complex skills when teaching novices. To combat
these tendencies, cognitive apprenticeship is designed, among
other things, to bring these tacit processes into the open, where
students can observe, enact, and practice them with help from the
teacher [15, 16].
Collins et al. describe cognitive apprenticeship as follows: “We
call this rethinking of teaching and learning in school cognitive
apprenticeship to emphasise two issues. First the method is aimed
primarily at teaching the processes that experts use to handle
complex tasks. Where conceptual and factual knowledge are ad-
dressed, cognitive apprenticeship emphasises their uses in solving
problems and carrying out tasks. Second, our term, cognitive ap-
prenticeship, refers to the learning-through-guided-experience on
cognitive and meta-cognitive, rather than physical, skills and
processes […] The externalization of relevant processes and
methods makes possible such characteristics of apprenticeship as
its reliance on observation as a primary means of building a con-
ceptual model of a complex target skill.” [15] (p.457).
According to [16], traditional apprenticeships have four important
aspects: modelling, scaffolding, fading and coaching. Modelling
is “supposed to give models of expert performance. This does not
refer only to an expert's internal cognitive processes, like heuris-
tics and control processes, but also to model the expert's perform-
ance, tacit knowledge as well as motivational and emotional im-
pulses in problem solving” [28] (p.241). Scaffolding is support
given by the master to the apprentices in order to carry out some
given task: ”This can range from doing almost the entire task for
them to giving them occasional hints on what to do next” [16] (p.
7). Fading is, as the word suggests, the master gradually pulling
back, leaving the responsibility for performing the task more and
more to the apprentice. Coaching is the entire process of appren-
ticeship ⎯overseeing the process of learning. The master coaches
the apprentice in many ways: choosing tasks, giving feedback,
challenging and encouraging the apprentice, etc.
Collins, Brown and Holum have described how these aspects can
be used in a more traditional, school based educational system:
“In order to translate the model of traditional apprenticeship to
cognitive apprenticeship, teachers need to: identify the process of
the task and make them visible to students; situate abstract tasks
in authentic contexts, so that students understand the relevance of
the work; and vary the diversity of situations and articulate the

114

common aspects so that students can transfer what they learn”
[16] (p. 8).

3.4 Worked Examples
Studies of students in a variety of instructional situations have
shown that students prefer learning from examples rather than
learning from other forms of instruction (e.g. [13, 33, 51]). Stu-
dents learn more from studying examples than from solving the
same problems themselves [8, 17]. The relevance of worked ex-
amples to programming education is explicitly expressed: “The
worked examples literature is particularly relevant to programs of
instruction that seek to promote skill acquisition, e.g. music,
chess, and programming” [2].
Atkinson et al. [2] emphasize three major categories that influ-
ence learning from worked examples; we present the categories as
how-to principles of constructing and applying examples in edu-
cation: (1) How to construct examples, (2) How to design lessons
that include examples, and (3) How to foster students’ thinking
process when studying examples.

How to construct examples. Accentuate subgoals. Structuring
worked examples so that they include cues or beacons that high-
light meaningful chunks of information reflecting a problem’s and
its solution’s underlying conceptual structure and meaning sig-
nificantly enhances learning [10]. Catrambone demonstrates that
formatting an example’s solution to accentuate its subgoals can
assist a learner in actively inducing the example’s underlying goal
structure, and that this cognitive activity presumably helps pro-
mote induction of deeper structure representing domain princi-
ples, or schemas [2]. Two techniques have particular efficacy: la-
bels (e.g. verbal specification) and visual separation of steps. Ca-
trambone found that it is the presence of a label, not its semantic
content, which influences subgoal formation.

How to design lessons that include examples. At least add a
second example. Educators must decide how many examples to
provide for each problem type. The number may be constrained
by external factors, but Reed and Bolstad [53] indicates that one
example may be insufficient for helping students to induce a us-
able idea, and that the incorporation of a second example, espe-
cially one that is more complex than the first, increases students’
learning outcome significantly. Others have found similar results:
education that helps to develop schemas helps in solving prob-
lems, and multiple examples of the same schema improves learn-
ing and transfer [22, 25].
Vary form of problem type. Novices categorize problems accord-
ing to surface features of the problem statement itself, whereas
experts categorize problems according to features and structural
similarities of their solution [74]. Variation of form (e.g. cover
story) can help novices to realize that there is a many-to-one rela-
tionship between form and problem type and vice versa: “when
students see the same battery of cover stories used across problem
types, they are more likely to notice that surface features are in-
sufficient to distinguish among problem types” [52]. This princi-
ple is a supplement to the variability-effect of section 3.2.3.
Alternate examples and practice problems. Lessons that pair each
worked example with a practice problem and intersperse exam-
ples throughout practice will produce better outcomes than les-
sons in which a blocked series of examples is followed by a
blocked series of practice problems [65].

How to foster students’ thinking process when studying ex-
amples. Induce self-explanations in example-based instruction.
The message from the large amount of self-explanation literature
is clear: students who self-explain outperform students who do
not. Furthermore, there are different forms of self-explanation,
and students often fail to self-explain successfully; most learners
self-explain in a passive and superficial way [13, 73]. A good deal
of self-explanation research has been conducted in the context of
programming education, e.g. [49, 50].
Beware of social incentives. Social incentives rarely work. Due to
the fact that most learners are passive and superficial self-
explainers, Researchers have made controlled experiments of ini-
tiatives aiming at increasing the quality of degree and quality of
self-explanation in various social contexts. In one experiment,
students were assigned the role of teacher. The hypothesis was
that teaching expectancy would motivate learners to thoroughly
self-explain worked examples. In another experiment, students
were paired and told to explain examples to each other. Surpris-
ingly, the result of all these experiment was counter-intuitive:
Neither teaching expectancy nor peer explanations improved per-
formance; in fact it appeared to hamper learning partly because of
increased stress and reduced intrinsic motivation on the part of the
students [2].

4. MODEL-BASED PROGRAMMING
In this section we provide a short characterisation of the notion of
model-based programming ⎯the approach to object-oriented pro-
gramming applied in the introductory programming course under
consideration. Furthermore, provide a brief characterisation of the
course; we describe duration, aims and goals (expressed as ex-
pected outcome), prerequisites, and examination form.

4.1 Model-Based Programming
In [34], the object-oriented perspective on programming is de-
fined as follows: “A program execution is regarded as a physical
model simulating the behaviour of either a real or imaginary part
of the world.” The real or imaginary part of the world being mod-
eled is called the referent system, and the program execution con-
stituting the physical model is called the model system.

Figure 3: Programming as a modeling process

The programming process (initiated by a vision of a new system)
involves identification of relevant concepts and phenomena in the

Conceptual
model

Phenomena
and vision

modeling

abstraction

Model system Referent system

Specification
model

Implementation
model

abstraction

115

referent system and representation of these concepts and phenom-
ena in the model system. This process consists of three sub-
processes: abstraction in the referent system, abstraction in the
model system, and modeling (no particular ordering is imposed
among the sub-processes). Figure 3 illustrates the programming
process as a modeling process between a referent system and a
model system.
In this course, specification models are expressed as a static class
model and (informal) functional specifications of the public
methods of each class of the models.
We adopt an incremental approach to programming education in
which novices are provided with worked examples and initially
do very simple tasks and then gradually do more and more com-
plex tasks, including design-in-the-small by adding new classes
and methods to an already existing design. In [7], the authors ar-
gue that “traditional approaches to CS1 and CS2 are not in con-
gruence with cognitive learning theory” and provide arguments
for a reversed order of topics based on Bloom’s classification of
educational objectives [6]. The title of Buck and Stucki’s paper is
“Design early considered harmful: Graduated exposure to com-
plexity and structure based on levels of cognitive development”,
and the message of the paper is that the ordering of topics that
best matches Bloom’s hierarchy of cognitive development is the
reverse of the order of activities in the classical software lifecycle
model. The students first do implementation of methods within an
existing design; later they move to design; and analysis and re-
quirements are covered in later courses.
In our current course design, we more or less ignore two of the
sub-processes described in Figure 3 and restrict ourselves to the
task of implementing and expanding specification models ex-
pressed as class diagrams, informal functional specifications of
methods, and test suites. (The students do design-in-the-small, but
the major emphasis is on implementing designs provided by the
teacher.)
When implementing specification models, we identify three inde-
pendent activities: (1) implementation of inter-class structures, i.e.
relations between classes and methods that maintain these rela-
tions; (2) implementation of intra-class structures, i.e. the internal
structure and representation of a class; and (3) implementation of
methods. (3) is logically part of (2), but because different princi-
ples and techniques are involved, we prefer to separate the two.
The principles and techniques that relate to the three activities are:
(1) standard coding patterns for the implementation of relations
between classes; (2) class invariants and techniques for evaluating
these; and (3) algorithm patterns (e.g. sweep, search, divide-and-
conquer) and loop invariant.
The loop invariant is a prime software engineering tool that al-
lows understanding each independent part of the loop ⎯initializa-
tion, termination, condition, progressing toward termination⎯
without having to look at the other parts [24]. Similarly, the class
invariant is a prime software engineering tool that allows us to
separate consideration and evaluation of alternative representa-
tions from implementation of the methods of the class and to im-
plement each method without worrying about the others. And the
same story goes for class modeling, which is a prime software en-
gineering tool that allows us to separate specification of each
class from specification of the relationship between classes. The
fundamental and recurring principle of separation of concerns

permeates the techniques of all three activities. Figure 4 summa-
rize activities and associated programming techniques for imple-
mentation of specification models.

Activity Techniques Characteristics

Imple-
menta-
tion of
inter-
class
structure.

Standard cod-
ing patterns
for the im-
plementation
of relations
between
classes.

Separation of the specification of each
class from specification of relationships
between classes.

Standard implementations of relation
types (aggregation and association, booth
with varying multiplicities) which sup-
ports schema creation and transfer.

Imple-
menta-
tion of
intra-
class
structure.

Class invari-
ants and tech-
niques for
evaluating
these.

Separation of consideration and evalua-
tion of alternative representations from
implementation of the methods of a class.

Separate implementation of each method
without worrying about the others.

Imple-
menta-
tion of
methods.

Algorithmic
patterns and
loop invari-
ants.

Standard implementation of algorithm
patterns (supports schema creation and
transfer).

Separation of initialization, termination,
condition, and progression.

Figure 4: Activities and associated programming techniques for
implementation of specification models

In the next section, we present the instructional design of the in-
troductory programming course where an incremental program-
ming process and practise of these activities and techniques con-
stitutes the primary contents of the course. Increasingly complex
specification models define the course progression, not constructs
of the programming language, as is the custom. We focus on
teaching aspects of implementing inter-class structure.

4.2 Course Description
The course Introduction to Programming lasts seven weeks (one
quarter) with four lecture hours and four practical lab hours with a
TA per week; the course supposedly takes up one third of the stu-
dents’ time of the quarter. There are weekly mandatory assign-
ments except for the first week of the course. The students are re-
cruited from a large variety of study programs including computer
science; in week six there is a subject specific project where the
students work on a simple programming project relevant to their
primary field of study (e.g. economy, mathematics, multimedia,
or nano science). The final exam is in week eight or nine.
The formal description of the course Introduction to Program-
ming is as follows:
Aims: The participants will after the course have insight into
principles and techniques for systematic construction of sim-
ple programs and practical experience with implementation of
specification models using a standard programming language
and selected standard classes.
Goals: Upon completion, the participants must be able to:
• apply fundamental constructs of a common programming

language.
• identify and explain the architecture of simple programs.
• identify and explain the semantics of simple specification

models.
• implement simple specification models in a common pro-

gramming language

116

• apply standard classes for implementation tasks.
Prerequisites: None.
Evaluation: Each student is evaluated through a practical ex-
amination where the student alone solves a concrete pro-
gramming task at a computer.
For more details about the course and examination form, see [4].

4.3 An Overview of a Concrete Course
In the course Introduction to Programming, we focus on teaching
aspects of implementing classes, inter-class structure, and meth-
ods with loops using the simple standard algorithmic pattern,
sweep (iteration through a data set). The course is organized in six
phases: (1) Getting starter, (2) Learning the basics, (3) Conceptual
framework and coding recipes, (4) Programming method, (5) Sub-
ject specific assignment, and (6) Practice. The focus, goal and
contents of the six phases are captured in Figure 5. In the table,
we use {method, class}{use, extend, create} as a terminology of
progression of programming assignments; the terminology is dis-
cussed further in section 5.1.1.
In the next section we present details of the instructional design of
the third phase, Conceptual framework and coding recipes.

Phase Week(s) Goal/Content

1 1.5 Getting started (method use)
Overview of fundamental concepts. Learning
the basics of the IDE.

2 1.5 Learning the basics (method extend and
method create)
Class (access modifiers), object
State (type, variable, value, integer)
Behaviour (instantiation, constructor, method
declaration, signature, formal parameter, return
type, method body assignment, invoking a
method, actual parameter, returning a value)
Control structures (sequence, iteration)

3 1 Conceptual framework and coding recipes
(class extend)
Control structure (selection, more iteration)
Data structure (Collections)
Class relationship (aggregation, association)
Schemas for implementing structure (class re-
lations)

4 1 Programming method (class extend and class
create)
The mañana principle
Schemas for implementing functionality (how
and in which order)

5 1.5 Subject specific assignments (class create)
Practice on harder and more challenging tasks
(problems)
Motivation: tasks/problems are picked from the
domain of the students’ major subject (bio-
informatics, business, chemistry, computer sci-
ence, economy, geology, math, multimedia,
nano science, etc.)

6 0.5+ Practice (class create)
Achieve routine in solving standard tasks
(UML2Java)

Figure 5: Sub-goals and progression

The learning theories described in section three plays a major role
in the overall instructional design. Worked examples (section
3.2.1) and guidance fading (section 3.2.4) are used throughout the
course. In phase 1 and 2, the emphasis is on reducing extraneous
cognitive load while phase 3 and 4 focus on germane cognitive
load through a pattern-based approach to programming and ex-
plicit teaching of the process of programming. In phase 2, 3, and
4, we focus on revealing the programming process by applying
the theory of cognitive apprenticeship. In phase 6 we focus on
cognitive skill acquisition and automation through repeated prac-
tice of programming patterns.
The detailed instructional design of each phase is also based upon
the learning theories; in the next section we unfold the detailed in-
structional design of phase 3.

5. INSTRUCTIONAL DESIGN
Section 5.1 presents a few fundamental principles of program-
ming education that guides us in organizing a programming
course. In section 5.2, we discuss organization of a small part of
an introductory programming course. In doing so, we apply re-
sults of cognitive science and educational psychology in general
and cognitive load theory in particular to ensure an instructional
design that balances the cognitive load in order to optimize learn-
ing. In particular, we focus on programming patterns ⎯the con-
crete representations of schemas in program and algorithm design.

5.1 Principles of Programming Education
In this section we briefly present four fundamental principles we
use to guide the instructional design of programming courses.
The principles are (1) Consume before produce, (2) Worked, ex-
emplary examples, and (3) Reinforce patterns and conceptual
frameworks. We lean on more principles, but these three are the
ones that most directly relates to the learning theories of section 3.

5.1.1 Consume before produce
In [48], the author introduces the call before write approach to
teaching introductory programming, arguing that it “allows stu-
dents to write more interesting programs early in the course and it
familiarizes them with the process of writing programs that call
subprograms; so it is more natural for them to continue writing
well structured programs after they learn how to write their own
subprograms”. Pattis points out that the “call before write” ap-
proach requires the linguistic ability to cleanly separate a subpro-
gram’s specification from its implementation.
In [57], the author briefly mentions the notion of consuming be-
fore producing by providing three specific examples. One exam-
ple is: “BlueJ allows beginning with an object “system” with just
one class where students just interactively use instances of this
class (they consume the notion of interacting with an object via its
interface). Producing the possibility of interacting with an object,
on the other hand, requires more knowledge about class internals
and should thus be done after the principle of interaction with ob-
jects is well understood”.
We rely heavily upon the principle of Consume-before-Produce.
The principle is applicable to a wide number of topics, e.g. code,
specifications, class libraries, design patterns, and frameworks.
We employ the principle with respect to the way students write
code at three levels of abstractions: method level, class level, and
class model level as follows: (1) Use methods (as indicated above,
BlueJ allows interactive method invocation on objects without

117

writing any code). At this early stage, students can perform ex-
periments with objects in order to investigate the behaviour and
determine the actual specification of a method. (2) Modify meth-
ods by altering statements or expressions in existing methods. (3)
Extend methods by writing additional code in existing methods.
(4) Create methods by adding new methods to an existing class.
This may also be characterised as extend class. (5) Create class
by adding new classes to an existing model. This may also be
characterised as extend model. (6) Create model by building a
new model for a system to be implemented.

5.1.2 Worked, exemplary examples
Examples are considered very important for learning in general.
Novice programmers even think they learn programming best
from examples [32]. However, computer science educators use
many examples that might do more harm than good (see for ex-
ample [26, 27, 35, 75]). It is therefore mandatory that these exam-
ples are not only correct but can also serve as a template for
“good” design and style in any reasonable aspect.

Exemplary can mean many things depending on purpose, perspec-
tive, and point of view. Our concern is to address the topic from a
didactical/pedagogical perspective.

All examples must follow all the definitions, and “rules” we have
introduced, i.e. we must say as we do and do as we say. This re-
quires very careful planning and development. According to our
own experience, shortcuts or examples constructed “on-the-fly”
will almost certainly introduce unintended problems.

Consequently, follow accepted principles, rules and guidelines.
However, make sure to keep the focus on OOP novices. Many
principles, rules, and guidelines are targeted toward professionals.
They might not be applicable or even meaningful for novices. Ac-
cepted principles, rules, and guidelines encompass (1) general
coding guidelines and style, like naming of identifiers, indenta-
tion, categorization of methods, like accessors, mutators, etc.; (2)
common principles, like the ones summarized in [36, 39]; and (3)
object-oriented design heuristics, like the ones described in [21,
55].

Finally, it pays off to get to know your students to be able to give
them relevant and challenging examples. In courses such as ours,
where students come from a large number of study programmes,
it is vital to ensure that the examples are meaningful to all. With
help from faculty members of other departments, we have devel-
oped subject specific assignments targeted at students from all
study programmes that officially include the introductory pro-
gramming course.

5.1.3 Reinforce patterns and conceptual frameworks
The fundamental motivation for a pattern-based approach to
teaching programming is that patterns capture chunks of pro-
gramming knowledge. According to cognitive science and educa-
tional psychology, explicit teaching of patterns reinforces schema
acquisition as long as the total cognitive load is “controlled” (see
section 3).
We reinforce patterns at different levels of abstraction including
elementary patterns, algorithm patterns, and design patterns, but
equally important, we provide a conceptual framework for object-
orientation that qualifies modeling and programming and in-
creases transfer [31, 34] (ch.18). Furthermore, we stress coding

patterns for standard relations between classes as we shall see in
the next section.

5.2 Conceptual Frameworks and Patterns
In this phase of the course (week 3-4) we introduce a subset of the
conceptual framework for object-orientation developed by Knud-
sen et al. [31, 34]. According to Madsen et al., the object-oriented
perspective on programming is defined as follows: “A program
execution is regarded as a physical model simulating the behav-
iour of either a real or an imaginary part of the world”. From the
object-oriented perspective, concepts are modeled as classes and
phenomena as objects. A basic understanding of phenomena, con-
cepts, and abstraction forms the basis of the conceptual frame-
work that provides well-defined characterizations of classifica-
tion, aggregation (decomposition), and generalisation (specialisa-
tion) as ways of forming concepts from phenomena or other con-
cepts. Object-oriented programming languages support these ab-
stractions mechanisms in different but similar ways; thus, the
conceptual framework provides knowledge and understanding
that carries across different object-oriented programming lan-
guages.

The conceptual framework provides guidance for a disciplined
use of components in modeling languages (e.g. UML) and ab-
straction mechanisms in object-oriented languages. We supple-
ment this guidance with coding recipes for the fundamental types
of relations between concepts (classes): generalisa-
tion/specialisation, aggregation/decomposition, and association.
In popular terms, generalisation is known as is-a, aggregation as
has-a, and association as x-a for any verb x different from is and
has.

5.2.1 Model patterns
In this phase, the programming tasks are described by class mod-
els such as ClockDisplay and NumberDisplay (a ClockDisplay
with two NumberDisplay objects), DieCup and Die (a DieCup
with two Die objects and later a DieCup with an arbitrary number
of Die objects, a Notebook with many Note objects (each with
many Keyword objects associated), a Playlist with associated
Track objects (each with associated Picture objects), Account
with Transaction objects, etc. The generic models the students
learn to implement in this phase are sketched in Figure 6.

Figure 6: Generic class models

A typical sequence of worked examples and problems is as fol-
lows: (1) a worked example is introduced in a lecture (implemen-
tation of a simple class model through live programming) and (2)
a supplement in the form of a video presentation of the same or a
similar example (screen capture of narrated programming session,

*
A B

*
A B

2
A B 1)

2)

3)

118

see [5]), (3) a lab-assignment, (4) another assignment for the class
later the same week, and (5) a mandatory assignment in the fol-
lowing week. This scheme repeats (partially overlapping) in the
following week with a new sequence of examples of increased
complexity. In the following we present two concrete examples of
such sequences of examples and problems.

Example A: (A1) In a lecture we present an example of a pro-
gram consisting of two classes: ClockDisplay and NumberDis-
play. A ClockDisplay has two NumberDisplays (showing hours
and seconds respectively). This example is from chapter 3 in Bar-
nes and Kölling’s textbook [3].

(A2) A video presentation of a partial development of the exam-
ple with ClockDisplay and NumberDisplay is made available.

(A3) A1 and A2 are followed by a lab-exercise where the students
interact with, modify, and extend the clock example.

(A4) A follow-up exercise where the students are provided with a
partial implementation of a project with two classes: DieCup and
Die. In this example a die cup always contains two die. To the
students, this is a completely different example than the clock ex-
ample; however, structurally they are identical (isomorphic), and
the students realize this ⎯sooner or later.

(A5) In the following week we give a mandatory assignment
where the students implement a project modeling a parent relation
between Person objects. Although this is a recursive relation (i.e.
a relation from a class to itself), it is conceptually and structurally
similar to the relation between ClockDisplay and NumberDisplay
and to the relation between DieCup and Die. The difference, of
course, is that there is only one class in play.

In a lecture following this sequence of activities related to exam-
ples of the aggregation-with-multiplicity-2 relation, we reveal the
structural similarity between the three examples. Some students
have already realized the similarity, but during the lecture, almost
all of the students realize that the seemingly very different exam-
ples actually have a lot in common beneath the surface. This re-
alization results in valuable schema acquisition and construction
of more general competencies and knowledge.

Example B: (B1) In a lecture we present an example of a program
with two classes: Playlist and Track, a Playlist object may be as-
sociated with any number of Track objects (a 0-many associa-
tion).

(B2) A video presentation of a partial development of a similar
example (Account and Transaction) is made available.

(B3) B1 and B2 are followed by a lab-exercise where the students
interact with, modify, and extend both examples.

(B4) We provide a follow-up exercise where the students extend
the Playlist-Track example by adding a new class representing a
Picture. A Track object may have any number of Picture objects
associated; (the idea is that the pictures associated to a track are
shown in turns while the track is playing).

(B5) Again we give a mandatory assignment where the students
implement a system of three classes: Notebook, Note, and Key-
word. A notebook may contain any number of notes and a note
may have any number of keywords associated (allowing notes to
be searched and categorised by keyword).

The structural similarity is revealed to the students in a following
lecture. In a follow-up exercise, the students are asked to develop
generic coding recipes for the zero-to-many association between
two classes. For example, the standard implementation of a zero-
to-many association is to declare a collection object at the origin
of the association and two methods to add/remove elements
to/from the association (see Figure 7, compare with Figure 6-3).

class B { ... }
class A {
 ...
 private List bs;
 public void add(B b) { bs.add(b); }
 public void remove(B b) { bs.remove(b); }
}

Figure 7: Pattern for implementation of zero-to-many association

These activities strongly support schema acquisition and hence
transfer of programming competencies.
As is evident from example A and B, worked examples, example
completion, and guidance fading play a key role in the organiza-
tion of the student’s learning process in phase 3. In activity 3, the
students interact with, modify, and extend the example from ac-
tivity 1 and 2. In activity 4, the students complete a new but simi-
lar example. In activity 5, the students implement a specification
model. The progression through the five activities illustrates how
the teacher’s guidance fades.
Schema acquisition is supported by variation of cover stories of
structurally similar programming tasks (e.g. Playlist-Track and
Account-Transaction).
Cognitive apprenticeship occurs in activity 1 and 2 where live
programming in class and videos illustrating the programming
process helps revealing the tacit knowledge and implicit processes
involved in program development.
The pattern-based approach to programming reveals standard so-
lutions to recurring class structures and hence supports the goal of
maximizing germane cognitive load in order to acquire the rele-
vant cognitive schemas.
The pattern-based approach is also utilized with respect to algo-
rithmic structures; this aspect is described in the following.

5.2.2 Algorithmic Patterns
Sweeping through a data set is a standard algorithmic pattern; ze-
ro-to-many associations invite methods with a select-like func-
tionality, e.g. findOne or findAll associated object(s) satisfying a
certain predicate. In the case of Account-Transaction it could be
all transactions within a certain timeframe or all transactions of at
least a certain amount. In the case of Playlist-Track it could be all
tracks with a certain rating or (one of) the most popular track.
Through several similar examples, we urge the students to iden-
tify algorithmic patterns to solve these kinds of standard problems
(inductive); occasionally we provide the patterns up-front (deduc-
tive). Figure 8 shows the two algorithmic patterns for finding one
or all associated objects satisfying a certain criteria (of a zero-to-
many association).

119

class B { ... }
class A {
 ...
 private List bs;
 public B findOneX() {
 B res= bs.get(0);
 for (B b : bs) {
 if (”b is a better X than res”) {
 res= b;
 } }
 return res;
 }
 public List findAllX() {
 List res= new ArrayList();
 for (B b : bs) {
 if (”b satisfies criteria X”) {
 res.add(b);
 } }
 return res;
 }
 ...
}
Figure 8: Patterns for implementing findOne and findAll

Worked examples that the students complete before the embark
on similar problems, and the faded guidance as described in ex-
ample A and B above help focus on the essential aspects of a pro-
gramming task, and the specific details of the programming lan-
guage becomes means to an end instead of a goal in itself.

6. CONCLUSIONS AND FUTURE WORK
We have provided an overview of selected learning theories: cog-
nitive load theory, cognitive apprenticeship, and worked examples
(a key area of cognitive skill acquisition) and we have described
the instructional design of a model-based, object-oriented intro-
ductory programming course according to effects and guidelines
of the aforementioned learning theories. The particular effects and
techniques applied are: worked examples, scaffolding, faded guid-
ance, cognitive apprenticeship, and emphasis of patterns to aid
schema creation and improve learning.
We have presented an overview of the instructional design of the
complete course and argued for the design according to the learn-
ing theories. Furthermore, we have provided a detailed presenta-
tion of one of six phases of the course where we discuss the appli-
cation of cognitive load theory, cognitive apprenticeship, and
worked examples in a pattern-based approach to programming
education.
The instructional design described in this paper has been success-
fully used for more than four years with more than 400 students
per year. We have not yet conducted any formal evaluation of the
instructional design. It would be relevant to do so, e.g. by running
controlled experiments and by applying the design at other insti-
tutions thus providing the opportunity for multi-institutional and
multinational studies of the effect of (elements of) the instruc-
tional design. So far, we have indications from colleagues at uni-
versities in Israel, U.K. and U.S.A. expressing interest in testing
(elements of) our instructional design.

7. ACKNOWLEDGEMENT
It is a pleasure to thank David Gries for comments and sugges-
tions for improvements of an earlier version of the paper.

8. REFERENCES
[1] Allsopp, D.H. "Metacognitive Strategies",

http://coe.jmu.edu/mathvidsr/metacognitive.htm, last ac-
cessed 25 January 2007.

[2] R. K. Atkinson, S. J. Derry, A. Renkl and D. Wortham,
"Learning from Examples: Instructional Principles from the
Worked Examples Research,” Review of Educational Re-
search, vol. 70, pp. 181-214, 2000.

[3] D. J. Barnes and M. Kölling, Objects First with Java: A
Practical Introduction using BlueJ. 3rd ed. New York: Pren-
tice Hall, 2006.

[4] J. Bennedsen and M. Caspersen, "Assessing process and
product — A practical lab exam for an introductory pro-
gramming course," in Proceedings of the 36th Annual Fron-
tiers in Education Conference, 2006, pp. M4E-16-M4E-21.

[5] J. Bennedsen and M. E. Caspersen, "Revealing the pro-
gramming process," in SIGCSE '05: Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Educa-
tion, 2005, pp. 186-190.

[6] B. S. Bloom, D. R. Krathwohl and B. B. Masia, Taxonomy of
Educational Objectives. The Classification of Educational
Goals. Handbook I: Cognitive Domain. New York: Long-
mans, Green, 1956.

[7] D. Buck and D. J. Stucki, "Design early considered harmful:
Graduated exposure to complexity and structure based on
levels of cognitive development," in SIGCSE '00: Proceed-
ings of the Thirty-First SIGCSE Technical Symposium on
Computer Science Education, 2000, pp. 75-79.

[8] W. M. Carroll, "Using worked examples as an instructional
support in the algebra classroom,” Journal of Educational
Psychology, vol. 86, pp. 360-367, Sep. 1994.

[9] Caspersen, M.E. "Educating Novices in the Skills of Pro-
gramming," DAIMI PhD Dissertation PD-07-4, University of
Aarhus, 2007.

[10] R. Catrambone, "The subgoal learning model: Creating bet-
ter examples so that students can solve novel problems,” J.
Exp. Psychol.: Gen., vol. 127, pp. 355-376, Dec. 1998.

[11] P. Chandler and J. Sweller, "Cognitive Load Theory and the
Format of Instruction,” Cognition and Instruction, vol. 8, pp.
293-332, 1991.

[12] W. G. Chase and K. A. Ericsson, "Skilled memory," in Cog-
nitive Skills and their Acquisition J. R. Anderson, Ed. Hills-
dale, NJ: Erlbaum, 1981, pp. 141-190.

[13] M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann and R.
Glaser, "Self-explanations: How students study and use ex-
amples in learning to solve problems,” Cognitive Science,
vol. 13, pp. 145-182, 1989.

[14] R. Clark, F. Nguyen and J. Sweller, Efficiency in Learning:
Evidence-Based Guidelines to Manage Cognitive Load. John
Wiley & Sons, 2006, pp. 390.

[15] A. Collins, J. S. Brown and S. E. Newman, "Cognitive ap-
prenticeship: Teaching the craft of reading, writing and
mathematics," in Knowing, Learning and Instruction: Essays
in Honour of Robert Glaser L. B. Resnick, Ed. Hillsdale, NJ:
Erlbaum, 1989.

120

[16] A. M. Collins, J. S. Brown and A. Holum, "Cognitive ap-
prenticeship: Making thinking visible,” American Educator,
vol. 15, pp. 6-11, 38-46, 1991.

[17] G. Cooper and J. Sweller, "Effects of schema acquisition and
rule automation on mathematical problem-solving transfer,"
J. Educ. Psychol., vol. 79, pp. 347-362, Dec. 1987.

[18] D. K. Detterman, "The case for the prosecution: Transfer as
an epiphenomenon," in Transfer on Trial: Intelligence, Cog-
nition and Construction D. K. Detterman and R. J. Sternberg,
Eds. Ablex publishing, 1993.

[19] J. P. East, S. R. Thomas, E. Wallingford, W. Beck and J.
Drake, "Pattern-based programming instruction," in 1996.

[20] S. Feinberg and M. Murphy, "Applying cognitive load the-
ory to the design of web-based instruction," in Proceedings
of IEEE Professional Communication Society International
Professional Communication Conference and Proceedings of
the 18th Annual ACM International Conference on Com-
puter Documentation, 2000, pp. 353-360.

[21] C. A. Gibbon and C. A. Higgins, "Towards a learner-centred
approach to teaching object-oriented design," in APSEC '96:
Proceedings of the Third Asia-Pacific Software Engineering
Conference, 1996, pp. 110.

[22] M. L. Gick and K. J. Holyoak, "Schema induction and ana-
logical transfer," Cognitive Psychology, vol. 15, pp. 1-38,
1983.

[23] J. G. Greeno, A. M. Collins and L. B. Resnic, "Cognition and
learning," in Handbook of Educational Psychology D. C.
Berliner and R. C. Calfee, Eds. New York: Macmillan, 1996,
pp. 15-46.

[24] D. Gries, "What Have We Not Learned about Teaching Pro-
gramming?" IEEE Computer, vol. 39, pp. 81-82, 2006.

[25] B. Hesketh, S. Andrews and P. Chandler, "Opinion-Training
for Transferable Skills: The Role of Examples and Schema,"
Education and Training Technology International, vol. 26,
pp. 105-156, 1989.

[26] S. Holland, R. Griffiths and M. Woodman, "Avoiding object
misconceptions," SIGCSE Bull, vol. 29, pp. 131-134, 1997.

[27] C. Hu, "Dataless objects considered harmful," Commun.
ACM, vol. 48, pp. 99-101, 2005.

[28] S. Järvelä, "The cognitive apprenticeship model in a techno-
logically rich learning environment: interpreting the learning
interaction," Learning and Instruction, vol. 5, pp. 237-259,
1995.

[29] S. Kalyuga, P. Ayres, P. Chandler and J. Sweller, "The Ex-
pertise Reversal Effect," Educational Psychologist, vol. 38,
pp. 23-31, 2003.

[30] P. A. Kirschner, "Cognitive load theory: implications of cog-
nitive load theory on the design of learning," Learning and
Instruction, vol. 12, pp. 1-10, 2002.

[31] J. L. Knudsen and O. L. Madsen, "Teaching object-oriented
programming is more than teaching object-oriented pro-
gramming languages," in ECOOP '88 European Conference
on Object-Oriented Programming, 1988, pp. 21-40.

[32] E. Lahtinen, K. Ala-Mutka and H. Järvinen, "A study of the
difficulties of novice programmers," in ITiCSE '05: Proceed-

ings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, 2005, pp.
14-18.

[33] J. LeFevre and P. Dixon, "Do Written Instructions Need Ex-
amples?" Cognition & Instruction, vol. 3, pp. 1, 1986.

[34] O. L. Madsen, B. Møller-Pedersen and K. Nygaard, Object-
Oriented Programming in the BETA Programming Lan-
guage. Addison-Wesley, 1993.

[35] K. Malan and K. Halland, "Examples that can do harm in
learning programming," in OOPSLA '04: Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, 2004,
pp. 83-87.

[36] R. C. Martin, Agile Software Development: Principles, Pat-
terns, and Practices. Upper Saddle River, NJ: Prentice-Hall,
2003, pp. 529.

[37] A. McGettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Lovegrove
and K. Mander, "Grand Challenges in Computing: Educa-
tion--A Summary," The Computer Journal, vol. 48, pp. 42-
48, 2005.

[38] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S. Clair
and L. Thomas, "A cognitive approach to identifying meas-
urable milestones for programming skill acquisition," in
ITiCSE-WGR '06: Working Group Reports on ITiCSE on In-
novation and Technology in Computer Science Education,
2006, pp. 182-194.

[39] B. Meyer, Object-Oriented Software Construction. 2nd Ed.,
Upper Saddle River, New Jersey: Prentice Hall, 1997,

[40] G. A. Miller, "The magical number seven, plus or minus
two: some limits on our capacity for processing informa-
tion," Psychol. Rev., vol. 63, pp. 81-97, Mar. 1956.

[41] O. Muller, "Pattern oriented instruction and the enhancement
of analogical reasoning," in ICER '05: Proceedings of the
2005 International Workshop on Computing Education Re-
search, 2005b, pp. 57-67.

[42] O. Muller and B. Haberman, "Guidelines for a multiple-goal
CS introductory course: Algorithmic problem-solving woven
into OOP," in ITiCSE '05: Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, 2005a, pp. 356-356.

[43] O. Muller, B. Haberman and H. Averbuch, "(An almost)
pedagogical pattern for pattern-based problem-solving in-
struction," in ITiCSE '04: Proceedings of the 9th Annual
SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, 2004, pp. 102-106.

[44] A. Newell and H. Simon, Human Problem Solving. Engle-
wood Cliffs, NJ: Prentice-Hall, 1972.

[45] A. Newell, P. S. Rosenbloom and J. E. Laird, "Symbolic ar-
chitectures for cognition," in Foundations of Cognitive Sci-
ence M. I. Posner, Ed. MIT Press, 1989, pp. 93-131.

[46] F. Paas, A. Renkl and J. Sweller, "Cognitive Load Theory
and Instructional Design: Recent Developments," Educa-
tional Psychologist, vol. 38, pp. 1-4, 2003.

[47] F. G. W. C. Paas and J. J. G. Van Merriënboer, "Variability
of worked examples and transfer of geometrical problem-

121

solving skills: A cognitive-load approach," J. Educ. Psychol.,
vol. 86, pp. 122-133, Mar. 1994.

[48] R. E. Pattis, "A philosophy and example of CS-1 program-
ming projects," in SIGCSE '90: Proceedings of the Twenty-
First SIGCSE Technical Symposium on Computer Science
Education, 1990, pp. 34-39.

[49] P. Pirolli, "Effects of Examples and Their Explanations in a
Lesson n Recursion: A Production System Analysis," Cogni-
tion & Instruction, vol. 8, pp. 207, 1991.

[50] P. Pirolli and M. Recker, "Learning Strategies and Transfer
in the Domain of Programming," Cognition and Instruction,
vol. 12, pp. 235-275, 1994.

[51] P. Pirolli and J. R. Anderson, "The role of learning from ex-
amples in the acquisition of recursive programming skills,"
Canadian Journal of Psychology, vol. 39, pp. 240-272, 1985.

[52] J. L. Quilici and R. E. Mayer, "Role of examples in how stu-
dents learn to categorize statistics word problems," J. Educ.
Psychol., vol. 88, pp. 144-161, Mar. 1996.

[53] S. K. Reed and C. A. Bolstad, "Use of examples and proce-
dures in problem solving," Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, vol. 17, pp. 753-
766, Jul. 1991.

[54] A. Renkl and R. K. Atkinson, "Structuring the Transition
From Example Study to Problem Solving in Cognitive Skill
Acquisition: A Cognitive Load Perspective," Educational
Psychologist, vol. 38, pp. 15-22, 2003.

[55] A. J. Riel, Object-Oriented Design Heuristics. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc, 1996.

[56] A. Robins, J. Rountree and N. Rountree, "Learning and
Teaching Programming: A Review and Discussion," Journal
of Computer Science Education, vol. 13, pp. 137-172, 2003.

[57] A. Schmolitzky, "Towards complexity levels of object sys-
tems used in software engineering education," in 2005.

[58] J. Segal and K. Ahmad, "The Role of Examples in the teach-
ing of Programming Languages," Journal of Educational
Computing Research, vol. 9, pp. 115-129, 1993.

[59] J. E. Sims-Knight and R. L. Upchurch, "Teaching Object-
Oriented Design Without Programming: A Progress Report,"
Journal of Computer Science Education, vol. 4, pp. 135-156,
1993.

[60] J. Sweller, "Cognitive technology: Some procedures for fa-
cilitating learning and problem solving in mathematics and
science," J. Educ. Psychol., vol. 81, pp. 457-466, 1989.

[61] J. Sweller, "Cognitive load during problem solving: Effects
on learning," Cognitive Science, vol. 12, pp. 257-285, 1988.

[62] J. Sweller and P. Chandler, "Why Some Material Is Difficult
to Learn," Cognition and Instruction, vol. 12, pp. 185-233,
1994.

[63] J. Sweller and G. A. Cooper, "The Use of Worked Examples
as a Substitute for Problem Solving in Learning Algebra,"
Cognition and Instruction, vol. 2, pp. 59-89, 1985.

[64] J. Sweller, J. J. G. Van Merriënboer and F. G. W. C. Paas,
"Cognitive Architecture and Instructional Design," Educa-
tional Psychology Review, vol. 10, pp. 251-296, 1998.

[65] J. G. Trafton and B. J. Reiser, "The contributions of studying
examples and solving problems to skill acquisition," in Pro-
ceedings of the Fifteenth Annual Conference of the Cognitive
Science Society, 1993, pp. 1017-1022.

[66] A. B. Tucker, "Strategic directions in computer science edu-
cation," ACM Comput. Surv., vol. 28, pp. 836-845, 1996.

[67] J. E. Tuovinen, "Optimising student cognitive load in com-
puter education," in Proceedings of the Fourth Australian
Computing Education Conference, 2000, pp. 235-241.

[68] R. L. Upchurch and J. E. Sims-Knight, "Integrating software
process in computer science curriculum," in Proceedings of
the 27th Frontiers in Education Conference, 1997.

[69] D. W. Valentine, "CS educational research: A meta-analysis
of SIGCSE technical symposium proceedings," in SIGCSE
'04: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education, 2004, pp. 255-259.

[70] J. J. G. Van Merriënboer, "Strategies for programming in-
struction in high school: Program completion vs. program
generation," Journal of Educational Computing Research,
vol. 6, pp. 265-285, 1990.

[71] J. J. G. Van Merriënboer and M. B. M. Croock, "Strategies
for computer based programming instruction: program com-
pletion vs. program generation," Journal of Educational
Computing Research, vol. 8, pp. 365-394, 1992.

[72] J. J. G. Van Merriënboer and H. P. M. Krammer, "Instruc-
tional strategies and tactics for the design of introductory
computer programming courses in high school," Instruc-
tional Science, vol. 16, pp. 251-285, 1987.

[73] K. VanLehn, "Cognitive Skill Acquisition," Annual Review
of Psychology, vol. 47, pp. 513-539, 1996.

[74] K. VanLehn, "Problem solving and cognitive skill acquisi-
tion," in Foundations of Cognitive Science M. I. Posner, Ed.
MIT Press, 1989, pp. 527-579.

[75] R. Westfall, "Technical opinion: Hello, world considered
harmful," Commun. ACM, vol. 44, pp. 129-130, 2001.

[76] Yam San Chee, "Cognitive apprenticeship and its application
to the teaching of Smalltalk in a multimedia interactive
learning environment," Instructional Science, vol. 23, pp.
133-161, 1995.

122

