
Killer “Killer Examples” for Design Patterns

Carl Alphonce
Department of Computer
Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

alphonce@cse.buffalo.edu

Michael Caspersen
Department of Computer

Science
University of Aarhus

DK-8200 Aarhus N, DK

mec@daimi.au.dk

Adrienne Decker
Department of Computer
Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

adrienne@cse.buffalo.edu

ABSTRACT
Giving students an appreciation of the benefits of using de-
sign patterns and an ability to use them effectively in de-
veloping code presents several interesting pedagogical chal-
lenges. This paper discusses pedagogical lessons learned at
the “Killer Examples” for Design Patterns and Objects First

series of workshops held at the Object Oriented Program-
ming, Systems, Languages and Applications (OOPSLA) con-
ference over the past four years. It also showcases three
“killer examples” which can be used to support the teach-
ing of design patterns.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Design

Keywords
Object-orientation, Design Patterns

1. WHY TEACH DESIGN PATTERNS?
The underlying premise of this paper, and indeed of the

workshops from which it derives, is that students need to
learn skills and concepts which will be of long-term value to
them even as the technology of the day changes. We believe
that design patterns are an important part of a student’s
education in this regard.

However, giving students an appreciation of the benefits
of using design patterns as well as an ability to use them ef-
fectively in developing code presents several interesting ped-
agogical challenges. This is especially true for instructors of
introductory courses.

The first challenge is that students tend to focus on the
input-output behavior of their programs rather than high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07
Copyright 2007 ACM .

level properties of their code. While the input-output be-
havior of a program is measure of its correctness, there are
other aspects of software design that are important. These
include the ability of a software solution to scale from small
problems to large problems, the degree to which the soft-
ware is extensible, how robust the software is, and so forth.
Workshop participants have observed that students do not
pay enough attention to these properties of software in their
coursework. Knowledge and use of design patterns highlight
these broader issues because they are in large measure the
raison d’etre of design patterns.

The second challenge to educators is that students often
do not believe that what they consider to be very “abstract”
design pattern solutions are used or even desirable in fast-
paced real-world settings.

A third challenge is that examples which benefit from the
application of patterns tend to be more complex (in the
sense of involving more code and a “richer” domain) than
typical textbook examples. This can make it more difficult
for students to grasp the examples and discern their essential
characteristics. Pattern catalogs, such as the classic “Gang
of Four” [4], are great resources for faculty, but not necessar-
ily for design pattern novices. Faculty need more accessible
examples to support their teaching.

A final challenge in teaching design patterns is that ex-
amples which are constructed by faculty to demonstrate
the power of patterns run the risk of lacking “street cred”:
students can easily perceive them to be ivory tower prod-
ucts with no grounding in real-world software development.
For this reason real-world examples are valuable, since they
drive home points better, but they are generally much too
complex to present directly to students.

Erich Gamma, in an interview with Bill Venners [5], says
of learning design patterns that “You have to feel the pain
of a design which has some problem. I guess you only ap-
preciate a pattern once you have felt this design pain.” His
point is that students will not appreciate design patterns if
the are presented to them without an appreciation of the
problem they solve. On reflection this makes pretty good
sense since a pattern is a solution to a problem in a context.
If you don’t believe in the problem – if you don’t own it–
how can you ever appreciate a solution? No problem, no
solution!

The “Killer Examples” workshop series was born of a de-
sire to gather examples of design pattern use which address
these challenges.

2. WHAT IS A “KILLER EXAMPLE”?

We define a “Killer Example” to be one which gives over-
whelmingly compelling motivation for something. The term
is inspired by “Killer App”, which is described by the Jargon

File [1] as, “The application that actually makes a sustain-
ing market for a promising but under-utilized technology.”

The “Killer Examples for Design Patterns and Object
First” workshops have been held at the OOPSLA (Object-
Oriented Programming, Systems, Languages and Applica-
tions) conference annually since 2002. In the first four years
we have had eighteen examples presented at the workshops.
Approaches to teaching design patterns in various settings
have also been discussed at these workshops.

This paper shares some of the general lessons we have
learned from the workshops, as well as three examples pre-
sented at the workshops which we feel best demonstrate
what it means to be a “Killer Example”.

3. LESSONS LEARNED: THE PEDAGOGY
OF “KILLER EXAMPLES”

Many lessons have emerged from the workshops. The
most important and recurring ones are described below.

Context Design patterns cannot effectively be taught in-
dependent of an application of it. Patterns must be
presented in a context which clearly demonstrates the
usefulness of the pattern in comparison to the software
built without the pattern.

Accessibility Design patterns cannot effectively be taught
if the examples used to demonstrate the benefits of the
patterns is too complex or too far removed from the
experience of students to be meaningful to them.

Real-world Design patterns cannot effectively be taught
unless the examples which demonstrate their applica-
tion and benefits have a real-world grounding. Since
patterns are mined from practitioner code, this is im-
portant.

Clear benefits Design patterns cannot effectively be taught
unless their benefits in terms of desirable high-level
properties of software, such as scalability, robustness,
extensibility, flexibility and maintainability are clearly
evident.

3.1 Intra-Pattern considerations
Although a single “killer example” may demonstrate the

use of several design patterns, it is important that for each
pattern students move through a sequence of stages of ex-
posure to a single pattern – we therefore refer to these as
intra-pattern considerations. These stages are motivated by
the “read-before-write” pedagogical pattern.[2]

Use it Students should gain an appreciation of the useful-
ness of a pattern by using an implementation of it. For
example, when learning the Iterator pattern students
should gain experience by using an Iterator to traverse
some collection.

Conceptualize it Students should be engaged in a discus-
sion of the general architecture of a given pattern. For
example, when learning the Iterator pattern students
must come to understand the concept of an iterator;
alternate approaches, such as a cursor, must be dis-
cussed.

Build it The next gain in understanding comes from a stu-
dent’s implementation of a pattern. When learning the
Iterator pattern students must next create a class that
is an iterator over some collection.

Analyze/study high quality code A deeper understand-
ing of any pattern comes from studying a variety of
high quality implementations of the pattern. In the
case of the Iterator pattern it is perhaps at this point
that students begin to truly grasp the beauty of hav-
ing a separate iterator which can access private parts
of a collection; in Java this is achieved by defining a
class’s iterator as a public inner class.

3.2 Inter-Pattern considerations
At some point the focus must shift from a single pat-

tern back to a system of mutually supporting patterns, as
demonstrated in a killer example. At this inter-pattern level
of experience, we find the following stages:

Design and construct Students must at some point ap-
ply their knowledge of patterns to design and construct
software. Killer examples can serve as useful exercises
for students also in this regard.

Evaluate A final step in the process of learning to use pat-
terns comes in being able to evaluate and critique the
use (or lack of use) of design patterns in software.

4. FIRST EXAMPLE: FRAMEWORKS
Software reuse, after decades of unfulfilled promises, is

beginning to become true in the form of object-oriented
frameworks.1 Industrial developers can build large, com-
plex software systems that are reliable and computational
efficient because they do not build from scratch; the reuse
the vast effort invested into software frameworks such as the
Java 2 Enterprise Edition, Java Swing, or Remote Method
Invocation (RMI).

4.1 Why Frameworks?
Good object-oriented frameworks are unique examples of

the strength of the object-oriented paradigm. Looking be-
hind the scenes of good frameworks shows how careful mod-
eling of domain concepts, use of polymorphism, and the use
of design patterns makes a piece of software highly flexi-
ble and demonstrates the power of low coupling and high
cohesion. It is simply a brilliant case study to learn from,
and as such the ultimate killer example of the use of design
patterns. The framework we present is developed specifi-
cally for educational purposes at the introductory level; the
framework encapsulates the MVC design pattern.[3]

4.2 Framework Essentials
The essential characteristics of software frameworks are

inversion of control and hotspots.

Inversion of control Typical novice programs consist of
a number of interacting objects and a single driver
that does the setup and defines the main flow of con-
trol. The novice programmer applies services provided
through classes that are part of the program or through

1This example is due to Michael Caspersen. It was presented
at the 2003 workshop.

library classes (e.g. collection classes). When pro-
gramming using a framework, the main flow of control
is out of the programmer’s sight; it is dictated and
controlled by the framework. The novice program-
mer’s task is to supply code that implements inter-
faces or specializes (abstract) super classes. This is
also known as the Hollywood principle: Don’t call us,
we’ll call you.

Hotspots Frameworks define core functionality, control flow,
and object collaboration patterns. Application pro-
grammers refine frameworks to specific domains by
adding code at well-defined points: the hotspots (also
known as hooks or variability points). Hotspots can be
realized in a number of different ways: call-back meth-
ods, delegation to objects implementing interfaces de-
fined by the framework, or subclassing.

A killer example framework must demonstrate the essen-
tial characteristics in a simple and convincing way; it must
be simple for novices to use and it must be flexible, i.e.
allowing a number of distinct, sensible, and interesting in-
stantiations.

4.3 Example: Presenter Framework
The killer example we have chosen is a presenter frame-

work. The presenter framework facilitates construction of
multi-media presentations of a domain where the compass-
directions are a suitable metaphor for user navigation; Fig-
ure 1 demonstrates an instantiation of the framework that
shows a presentation of the tomb of Tutankhamon. Using
the compass-directions it is possible to visit the different
parts of the tomb while pictures and text is being presented
to the user.

The presenter framework provides the application pro-
grammer with the simple interface shown in Figure 2. This
is the hotspot of the framework; an abstract class which the
application programmer must specialize to a specific appli-
cation.

The presenter framework provides the backbone function-
ality: a large area for displaying images, a smaller one for
displaying text, and the four buttons labeled North, East,
South, and West. The buttons respond to user clicks by
invoking one of the four abstract methods in the abstract
class Presenter which the application must specialize.

Instantiating the framework is a matter of redefining the
four abstract methods in class Presenter (see Figure 3).

4.4 Model-View-Controller in Action
The presenter framework encapsulates the MVC design

pattern by defining a View and an abstract Controller which
can be plugged with a concrete Controller and a Model
to provide a full application. The overall architecture is
sketched in Figure 4.

4.5 Discussion
Frameworks can serve in teaching in several ways. At the

introductory level frameworks may serve as a black box that
makes even a small student effort into a rather impressive
program. Later, the black box can be opened to demon-
strate how good frameworks are structured. The presenter
framework is also used as a stepping stone toward learning
more advanced frameworks; the simplicity of the presen-
ter frameworks makes it easier to grasp and understand the

Figure 1: Instantiation of the Presenter Framework

public abstract class Presenter {

public void showImage(String filename) { ... }

public void showText(String text) { ... }

public abstract void northButtonPressed();

public abstract void eastButtonPressed();

public abstract void southButtonPressed();

public abstract void westButtonPressed();

}

Figure 2: The abstract class Presenter

public class TutankahmonPresenter {

public abstract void northButtonPressed() {

guest.move(NORTH);

}

....

}

Figure 3: Specialization of the abstract class Pre-
senter

Figure 4: Software architecture

essential characteristics of frameworks (inversion of control
and hotspots) and provides a solid ground for working with
more complex frameworks (e.g. the Java GUI framework
Swing).

We claimed that a killer example framework should allow
a number of distinct, sensible, and interesting instantiations.
Here are a few such instantiations for this framework:

Virtual museum tour An application which collects pic-
tures of paintings and other artifacts from the Internet
and presents a user with a virtual tour of a museum.

Presentation tool The framework forms the core of a pre-
sentation tool, along the lines of PowerPoint.

Map navigation Rather than having user interaction gen-
erating buttonPressed events, one can have them gen-
erated indirectly from a GPS receiver, such that if the
coordinates change sufficiently much in a given direc-
tion, a buttonPressed event is generated.

While this example does not come directly from a real-
world application, the connection to real-world applications
is clear and therefore compelling to students.

5. SECOND EXAMPLE: HARDWARE AND
SOFTWARE TESTING

Since Design Patterns have grown from the OO commu-
nity, there are many outside of that community that have
difficulty accepting design patterns as applicable to other do-
mains.2 This is especially true once you leave the software
domain and travel to the lands of hardware development,
embedded systems, or distributed real-time systems.

In the software domain, and when students study soft-
ware engineering, an often discussed topic is the idea that
when developing large software systems, their development
is broken into modules. Those modules are often developed
concurrently. The different modules often need to communi-
cate with one another, but development of one module can
not stop to wait for another module to be completed.

The same is true in the hardware domain, except some of
the modules are software pieces while others are hardware
components and their drivers. Developing the software af-
ter the hardware is available is often impossible, and both
pieces need to be developed and tested concurrently. How-
ever, without the hardware to use in the tests, test-driven
development, which has shown to be a useful development
methodology, can be a challenge.

This example is an industrial example that has been used
by a company that develops real-time and embedded sys-
tems. They needed to devise a way to develop and test their
entire product, the software components and the hardware
it will run on concurrently.

5.1 A First Attempt
A näıve attempt to solve this problem is shown in figure 5.

A test case is written (TestCase) to test the class/component
(ClassUnderTest). ClassUnderTest requires one or more of
the hardware components controlled by drivers A, B, and
C. The problem with this design stems from the fact that
the hardware components are still under development and

2This example is due to Bruce Trask and Angel Roman. It
was presented at the 2005 workshop.

ClassUnderTestTestCase

HWElementDriverC

HWElementDriverB

HWElementDriverA

Figure 5: Näıve implementation

therefore their drivers are not available. Therefore, testing
the class would not be possible until the drivers become
available. However, we can introduce a solution which allows
us to program to an interface, not an implementation and
complete the testing of ClassUnderTest.

5.2 The Strategy Pattern
If we introduce the strategy pattern to this problem, we

create interfaces for each one of the hardware driver ele-
ments. The drivers themselves have yet to be written be-
cause the hardware components are not yet completed. The
introduction of interfaces enforces what the drivers will look
like (i.e. what methods the drivers will contain). Then, test-
ing can be completed of ClassUnderTest before the hardware
is ready. Also, when introducing this pattern, we allow for
differences in the underlying implementation of the drivers
(i.e. multiple classes that implement the driver interface but
actually connect to different hardware implementations).

5.3 The Abstract Factory Pattern
Introducing the Strategy pattern allows us to test the

ClassUnderTest independent of the hardware or hardware
driver implementations. However, we could have introduced
a potential problem. Suppose that some implementations of
the driver for hardware component A, only work with certain
other configurations of hardware components B and C. We
need a way to ensure that the correct configuration of hard-
ware components and drivers are tested. Thus, the intro-
duction of an abstract factory becomes necessary to manage
the configurations of the drivers for the hardware compo-
nents. Then, the TestCase can interact directly with the
factory to invoke the proper configuration of the hardware
when testing the ClassUnderTest.

Applying both these patterns results in a design as shown
in figure 6.

5.4 Why this example is Killer
The applications of the patterns to help solve this problem

are not buried in the complexity of the solution to under-
stand. It illustrates the fact that patterns do not always
exist in isolation and the introduction of one pattern often
necessitates the introduction of more. This example also
illustrates that design patterns are not limited to organi-
zations that strictly develop software, but can be used to
work with embedded and real-time systems development. It
also shows how design patterns can support the test-driven
development methodology.

HWFactory

AlternateFactory

ClassUnderTest

TestCase

AlternateImplA

HWElementDriverA

+createA()
+createB()
+createC()

Factory
<<interface>>

<<interface>>
HWElementDriverAInterface

Figure 6: A more flexible approach

6. THIRD EXAMPLE: INTERACTIVE PRO-
GRAM GUIDE

An interactive program guide (IPG) allows a user to browse
television (cable/satellite) content in various ways, such as
by channel, title, timeslot, and genre.3 Some systems pro-
vide access to weather forecasts. It is also possible to use
the IPG to set subtitle or closed captioning options. To
control the IPG a user presses keys on a remote control.
The remote control typically has a small number of buttons
used for navigation and selection. Depending on the current
state of the IPG system, different things might happen when
a given button is pressed.

For example, selecting a program to watch in the normal
TV mode will switch to the indicated channel. However,
in pay-per-view (PPV) mode some additional level of con-
firmation is required, so that a user does not accidentally
incur a charge for a program they do not wish to pay for.

Similar systems are used in hotels to present guests with
various kinds of information. For example, hotel systems
allow guests to order things as diverse as movies and room
service. They typically also allow guests to view their hotel
bill on-screen and also to check out.

This example is especially interesting because it is a real-
world example combining a large number of patterns which
nonetheless is accessible. Among the many patterns incor-
porated in this example are state, model-view-controller, ob-
server, iterator, composite, command, singleton, and proxy.
The role of a few of these patterns in the example is pre-
sented below.

6.1 Iterator Pattern
The iterator pattern is used to allow the IPG system to

traverse a variety of data structures, representing things
such as channels, groups of channels, programs, etc. The
IPG system maintains a “current” position during brows-
ing, something that lends itself to implementation using a
bi-directional iterator.

6.2 State Pattern
An obvious design issue is that the system is state-based.

In other words, its behavior is governed by the particular
state that it is in. Indeed, the behavior associated with all

3This example is due to Asher Sterkin. It was presented at
the 2003 workshop.

the buttons on the controller change together as the state of
the IPG changes. This is modelled this using a state pattern.

Using the state pattern in this example helps to ensure
robustness: the behavior of the system is always coherent,
since the behaviors associated with a collection of buttons
is changed en masse.

6.3 Command Pattern
The command pattern is used to represent the behaviors

associated with particular buttons on the controller. Be-
cause these behaviors are “objectified” as command objects
the system retains the flexibility to easily accomodate new
menus with new features.

6.4 Mediator Pattern
The mediator pattern is used to maintain loose coupling

between components in the case where the IPG displays cat-
egory information in one pane and element information in
another, and changes to the category must result in changes
to the set of elements displayed.

6.5 Discussion
This example has demonstrated the potential application

of a handful of design patterns in a real-world software sys-
tem. The beauty of this particular example is that it is one
that is familiar to most, if not all, students. The domain of
the problem is therefore immediately accessible to them.

7. CONCLUSION
In this paper, we have discussed three “Killer Examples”

that introduce students to problems that lend themselves
nicely to solutions using design patterns. Many of the com-
plaints of instructors about teaching design patterns stem
from the inability to find examples that show the utility of
patterns. Many examples are of “toy problems” that do not
show the usefulness of the pattern in a larger context, or
the examples involve a system that is too complex to break
down. A unique balance has been reached in these three ex-
amples that allows an instructor to provide a problem and
a problem domain that is accessible to students that points
to where design patterns can be useful and beneficial to the
overall system.

The example used to illustrate patterns is arguably the
“make or break” point in a student’s pattern education. If
patterns are presented as some lofty educational-only idea,
students will not see them for their usefulness in real-world
software development settings. If patterns are viewed and
presented by educators as a real-world-only problem, then
students will miss out on an opportunity to be exposed to a
beneficial tool for software engineering early in their careers.

8. REFERENCES
[1] The jargon file. http://catb.org/~esr/jargon/.

[2] J. Bergin. Some pedagogical patterns.
http://csis.pace.edu/ bergin/patterns/fewpedpats.html.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture.
John Wiley & Sons, 1996.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[5] B. Venners. How to use design patterns – a
conversation with Erich Gamma, part I. 2005.

