
Teaching Polymorphism Early

Joseph Bergin
Panel Chair

Pace University
One Pace Plaza

New York, NY 10038 USA
1-212-346-1499

berginf@pace.edu

Eugene Wallingford

Panelist
University of Northern Iowa

Cedar Falls, IA, USA
1- 319-273-2618

wallingf@cs.uni.edu

Michael Caspersen

Panelist
University of Aarhus

Aabogade 34
DK-8200 Aarhus N, Denmark

45-2338-2067

mec@daimi.au.dk

Michael Goldweber
Panelist

Xavier University
3800 Victory Parkway

 Cincinnati, Ohio 45207 USA
 1-513-745-3936

mikeyg@cs.xu.edu

Michael Kölling

Panelist
University of Kent

Canterbury
Kent, CT2 7NF, UK

44-1227-827570

m.kolling@kent.ac.uk

ABSTRACT
Is it possible to teach dynamic polymorphism early? What
techniques could facilitate teaching it in Java. This panel will
bring together people who have considered this question and
attempted to implement it in various ways, some more completely
than others. It will also give participants an opportunity to explore
the topic and to share their own ideas.

Categories and Subject Descriptors
D.1.5 [Programming Techniques] Object-Oriented
Programming.

General Terms
Algorithms, Languages.

Keywords
Object-Oriented Programming, Polymorphism, First Course.

1. INTRODUCTION
Dynamic polymorphism is an important component of object-
oriented programming in languages like Java. The question then
becomes when to teach it, early or late. If a decision is made to
teach it early, then we must discover how to do it effectively. This
panel will discuss these issues. Though all members generally
believe that polymorphism can and should be taught early, each
has different ideas about how early and how to do it. Some are,
indeed, still exploring this issue. Java, in particular, opens the way
to teach dynamic polymorphism before teaching inheritance, via

interfaces. On the other hand, teaching polymorphism may require
larger examples than people are comfortable using early in a
curriculum. Can this be avoided, or if not, leveraged? Elementary
design patterns can help, but how. Tools and libraries can help,
but again, how. What would occur if we could successfully teach
polymorphism very early? These are deep issues that affect how
we teach the early courses. The panelists will make very short (5
minute) presentations and most of the available time will be
available for an open exploration with the audience on the issues.
It is hoped that the panel can open the way for a community to
further explore and develop the ideas presented here.

An attempt will be made to capture ideas for presentation on a
web site.

2. PANELIST POSITIONS AND
BIOGRAPHICAL SKETCHES
2.1 Joe Bergin
Joe Bergin believes, following the Early Bird pedagogical pattern,
that polymorphism, being the key idea of OO, needs to be taught
first, not just early. In this way the students will have the most
opportunity to practice and reinforce the ideas. In fact,
polymorphism should be taught even before you have code
(syntax) to support it, using metaphor and role-play.
Polymorphism is an easy topic to explain and it is easy for the
students to grasp. It does, however, have deep implications that
require a certain thought process that affects how you design
programs.
Joe has been teaching since 1972 and objects since 1985. He is
the author of four books on aspects of object-oriented
programming. The latest is Karel J Robot: A Gentle Introduction
to the Art of Object-Oriented Programming in Java, with Stehlik,
Roberts, and Pattis.

Copyright is held by the author/owner(s).
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
ACM 1-59593-024-8/05/0006.

342

2.2 Eugene Wallingford
Polymorphism serves as the foundation of nearly every pattern of
object-oriented programming. As such, students should learn and
use polymorphism early and often, so that they can develop a deep
understanding of the more complex design ideas that follow. By
focusing on message passing from Day 1 of CS1, students can
grow into a programming model in which object relationships and
communication are the centerpiece of program design, rather than
algorithmic patterns.
Fortunately, students can understand and use polymorphism on
Day 1 of CS1. They see it in the real world, and they can readily
learn to implement the idea in code. The real challenge in
teaching polymorphism early lies in identifying and using
programming examples in which polymorphism plays a natural
part of the solution.
Eugene Wallingford has been writing object-oriented programs
for more than fifteen years and teaching object-oriented
programming for more than ten. He is a long-time advocate of
pattern-driven approaches to learning programming.

2.3 Michael Caspersen
Michael E. Caspersen believes in a model-driven and systematic
approach to object-oriented programming where the progression
in the first course is shaped by complexity of problems and
conceptual models of the problem domain rather than the
traditional progression defined by complexity in the programming
language. To facilitate a jump start of the introductory course,
and in accordance with the Early Bird pedagogical pattern,
Michael uses an objectified version of turtle graphics which
allows for early (i.e. from day one) exposure of key object-orien-
ted concepts such as class, object, state, behaviour, inheritance,
polymorphism, class model, control flow, parameterisation,
design by contract (specifications), etc. The use of objectified
turtle graphics is combined with the use of LEGO robots to
demonstrate a nifty example of polymorphism.
Michael has been teaching since 1984 and objects since 1989. He
is the author of two books on programming (in Danish) and
several papers on teaching programming published at SIGCSE
and ITiCSE.

2.4 Michael Goldweber
Instead of objects first/early or polymorphism early I believe that
the initial focus should remain on (return to?) algorithmic
problem solving. From this perspective one could argue that
polymorphism is more important than objects/encapsulation and
therefore deserves greater treatment early on. The difficulty of
this is that to focus on algorithmic problem solving one usually
uses many small diverse algorithmic/programming tasks to
explore different ideas, build confidence, etc. Good examples of
polymorphism are, on the other hand, usually larger in scope than
what many like to tackle in the introductory course(s).
Unfortunately, the traditional algorithmic-focused problems one
can realistically expect introductory students to solve as
programming (or design) problems do not lend themselves to
worthwhile (i.e. unforced) examples of polymorphism.
Mikey has been teaching since 1990 and objects for over 10 years.
While he has not (yet) authored any introductory texts he has been
involved in many innovative experiments revolving around the
introductory course sequence.

2.5 Michael Kölling
Michael Kölling believes that polymorphism is not the very first
thing to be covered (since not everything can be first), but one of
the important early topics. He also thinks that the fundamental
principle of polymorphism can be understood quite easily using
general intuition, if presented with the right examples. BlueJ, a
software tool for teaching OO principles, has been designed so
that polymorphic behavior may be illustrated easily: Interactively
invoking the same method on different objects can exhibit
different behavior, and objects of distinct (sub-)classes may be
passed to a method expecting the superclass as a parameter. Thus,
the difference in behavior due to polymorphic dispatch can be
directly observed.
Using these tools, an intuitive understanding gained, for instance,
from role play, can easily be transferred to Java objects.
Michael Kölling has studied object-oriented systems since the late
1980s, and has worked on developing pedagogical tools for
teaching object orientation since the mid 1990s. He is one of the
developers of BlueJ.

343

