
Work in Progress  Session T3C 

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

T3C-23 

AN INVERTED CURRICULUM FOR CS1 
 

Michael E. Caspersen1 
 
 

                                                                 
1 Michael E. Caspersen, University of Aarhus, Department of Computer Science, It-park, Aabogade 34, DK-8200 Aarhus N, Denmark mec@daimi.au.dk  

Abstract - Most introductory programming courses and 
textbooks are structured according to the constructs of the 
adopted programming language and not on the basis of 
those language independent concepts, principles and techni-
ques of programming that the students should master by the 
end of the course. 

We present and discuss the inverted curriculum for our 
introductory object-oriented programming course. and our 
experiences from teaching this course for four years. We 
identify four levels for the systematic construktion of 
programs, and the structure of our programming course is 
based on these four levels: the modeling level, the design 
level, the class level, and the algorithmic level. 
 
Index Terms – Inverted curriculum, pedagogical patterns, 
object-oriented programming, systematic programming. 

INTRODUCTION 

It is our firm conviction that the primary aim for an 
introductory programming course is that students learn fun-
damental principles and general techniques for systematic 
construction of programs; consequently, we have designed 
an introductory programming course where we are focusing 
on such principles and techniques from the very first day and 
thereafter unfold these throughout the course as the students 
learn more and more of the adopted programming language 
(currently Java). 

MEYER’S VISION 

Our view is not a novel one as is evident from many papers 
from past SIGCSE conferences [1, 5, 6, 8, 9].  Bertrand 
Meyer [7] coined the term “the inverted curriculum” (or 
“consumer-to-producer-strategy”) meaning that important 
topics and concepts should be covered first by using classes 
(solely through their abstract specifications), and only then 
the students shall learn about the internals of classes.  A 
simplified variant of Meyer’s vision is the objects-first 
approach which is prevailing in many new textbooks, but 
still many of these new books are structured on the basis of 
the constructs in the programming language and not on the 
basis of the concepts, principles and techniques that the 
students are supposed to master by the end of the course. 
 The fundamental concepts, principles and general 
techniques that are our primary concern are: objects, classes, 
state, control flow, para meterisation, informal design by 
contract (functional specifications, class invariants, loop 
invariants), conceptual and object-oriented modeling, design 

with interfaces, polymorphism, frameworks and algorithmic 
patterns (sweep, searching, merging, etc.). 

THE EARLY BIRD APPROACH 

Most of core concepts, principles and techniques are well-
known, but rarely tought thoroughly in an introductory 
programming course; we do this, and we do it up front as 
early as possible.  Our approach is an instance of the early 
bird pedagogical pattern  by Bergin [2]. Our over all 
pedagogical model is a so-called spiral approach; we don’t 
expect students to learn everything about a topic at first 
encounter, but we want to present and stress big ideas early. 
 In particular we focus on techniques for systematic 
programming.  We identify and teach systematic techniques 
at four differeing levels: the modeling level (from problem 
description to UML model), the design level (from UML 
model to code structure), the class level (from interfaces and 
code structure to fully programmed classes using class 
invariants) and the algorithmic level (from functional 
specifications to implementations using algorithmic patterns 
and loop invariants). 
 We have given this course for 4-5 years, and our 
experience is very promissing [3, 4].  In a future paper we 
will expand on our approach and our experiences. 

REFERENCES  

[1] Astrachan, O. and Reed, D., "The Applied Apprenticeship Approach to 
CS1", SIGCSE Bulletin , 27, 1, 1995, pp. 1-5. 

[2] Bergin, J., "Fourteen Pedagogical Patterns", www.csis.pace.edu/ 
~bergin/PedPat1.3.html. 

[3] Caspersen, M.E. and Christensen, H.B., "Here, There and Everywhere 
— On the Recurring use of Turtle Graphics in CS1", In Proceedings 
of the Fourth Australasian Computing Education Conference, ACE 
2000, Melbourne, Australia, 2000, pp. 34-49. 

[4] Caspersen, M.E., and Christensen, H.B., "Frameworks in CS1 – a 
Different Way of Introducing Event-Driven Programming", SIGCSE 
Bulletin, 34, 3, 2002, pp. 75-79. 

[5] Decker, R. and Hirshfield, S., "Top-Down Teaching: Object-Oriented 
Programming in CS 1", SIGCSE Bulletin , 25, 1, 1993, pp. 270-273. 

[6] Hilburn, T.B., "A Top-Down Approach to Teaching an Introductory 
Computer Science Course", SIGCSE Bulletin , 25, 1, 1993, pp. 58-62. 

[7] Meyer, B., Object-Oriented Software Construction , Prentice-Hall, 1997 
(2nd edition). 

[8] Pattis, R.E., "The ‘Procedures Early’ Approach in CS 1: A Heresy", 
SIGCSE Bulletin , 25, 1, 1993, pp. 122-126. 

[9] Reek, M., "A Top-Down Approach to Teaching Programming", 
SIGCSE Bulletin , 27, 1, 1995, pp. 6-9. 


