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A B S T R A C T

In this report we present and compare pathfinding algorithms used
in 8-connected grid worlds and in two-dimensional polygonal worlds.
These include Dijkstra’s algorithm, A*, Jump Point Search, HPA* and
two visibility graph based algorithms. On top of that we present
our own BSP (Binary Space Partitioning) based optimal pathfinding
algorithm for dynamic two-dimensional polygonal worlds.

We have seen how currently available optimal pathfinding algo-
rithms for polygonal worlds rely on a heavy preprocessing step, in
which a visibility graph is created. We introduce methods for reduc-
ing the size of the visibility graph, and for reducing the number of
expanded nodes during pathfinding. With these methods and a BSP
at hand, we show how the visibility graph can in fact be removed
altogether while still achieving satisfying running times. With the
preprocessing gone, our algorithm becomes applicable for dynamic
polygonal worlds.
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1
I N T R O D U C T I O N

Pathfinding is used to solve the problem of finding a traversable path
through an environment with obstacles. This is a problem seen in
many different fields of study, which include robotics, video games,
traffic control, and even decision making. All of these areas rely on
fast and efficient pathfinding algorithms. This also means that the
pathfinding problem appears in many different shapes and sizes. Ap-
plications in need of pathfinding will prioritize things differently and
lay down different requirements on the algorithms. It is therefore
worth exploring and comparing a wide variety of algorithms, to see
which ones are better for any given situation.

In this thesis we focus our research on pathfinding algorithms for
use in 2D environments. We look at two different types of world rep-
resentations, namely the 8-connected grid world and the polygonal
world. These world representations pose different challenges which
require different strategies when it comes to pathfinding. We exam-
ine and compare Dijkstra’s algorithm, A*, JPS (Jump Point Search),
HPA* (Hierarchical Pathfinding), VG (Visibility Graph) and our own
contributions: VGO (Visibility Graph Optimized) and BSP*.

We currently see a trend in video games, where the environments
are becoming more and more interactable. Instead of having static
environments, the player can now destroy or add to the environment.
This is a problem when many pathfinding algorithms rely on prepro-
cessing of a static environment. We found no currently used pathfind-
ing algorithms that were specifically designed for dynamic polygonal
environments. We therefore introduce BSP*; an optimal pathfinding
algorithm for use in dynamic polygonal worlds, which can achieve
satisfying running times without the need of a heavy preprocessing
step. We do a comparison of all the algorithms across both world
representations, to find out which algorithms are best for both static
and dynamic environments.

In chapter two we specify the pathfinding problem. After that in
chapter three the two world types are described. In chapter four we
introduce and explain the algorithms. In chapter five and six we test
and compare the algorithms, and finally in chapter seven and eight
we discuss and conclude on our findings.
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2
P R O B L E M S P E C I F I C AT I O N

The problem of pathfinding is an easy one to understand. Planning
a path, from where you are, to where you want to go, is something
you do on a daily basis. The hard part of pathfinding comes when
we want computers to do it for us. Applications nowadays often put
strict requirements on running time, memory usage and path length.
Add to that a large, maybe even dynamic, environment, and you have
a complex problem with many aspects to consider.

Many different fields of study will use pathfinding in some way
or another. To consider all possible applications would be too broad
of a study. Instead we have chosen to look at pathfinding through
the eyes of a video game developer. In that case the pathfinding
problem is almost always defined in a 2D environment. Even for
3D games the pathfinding problem can usually be reduced to a 2D
problem, since movement is only allowed on the ground. For this
reason we have chosen to consider only the 8-connected grid world
and the polygonal world, since these are often seen in video games.
We consider the agent in need of pathfinding to be point sized. This
is by no means common in video games, but it simplifies the problem,
and the solutions can often be extended to work with agents of larger
size.

When comparing pathfinding algorithms one should at least con-
sider three things: running time, memory usage and path length. A
fast pathfinding algorithm ensures responsiveness, which is impor-
tant for most games, and an optimal path length is needed if the
game is competitive, such as is the case with a lot of real-time strategy
games. Memory constraints are usually not a problem for the com-
puters of today. Therefore we have chosen to focus our research on
the running time and path length, and only briefly consider the mem-
ory usage of each algorithm. Path lengths are not explicitly measured,
but all algorithms promise optimal or near-optimal path lengths.

The final thing to consider is the behavior of the environment itself.
If the environment is static, one is able to perform a preprocessing
step to improve the running times of all future pathfinding queries.
If, on the other hand, the environment is constantly changing we
do not have the luxury of a preprocessing step. In this case we are
left with only the algorithms that can perform pathfinding directly
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problem specification

on the environment without preprocessing it. We consider both the
static and the dynamic case, when comparing the algorithms.

In summary we wish to find out which algorithms are best used
for static and dynamic environments, when priority is put on running
time and path length.
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3

W O R L D R E P R E S E N TAT I O N S

Pathfinding is used in many different situations. This means that the
worlds, in which pathfinding is required, have a wide variety of rules
and features. It is important to consider these features to be able to
create optimal pathfinding solutions. However some worlds require
several steps of simplification, before pathfinding is even feasible.

In this report we examine pathfinding on two rather simple world
representations, namely the 8-connected grid world and the polygo-
nal world. These are commonly used world representations, which
are often subject to pathfinding. Furthermore many other complex
worlds can easily be simplified to either a grid world or a polygonal
world.

3.1 the 8-connected grid world

The first world representation we look at is the 8-connected grid
world. An 8-connected grid world is a collection of cells, ordered in
a grid like manner, where movement is only possible in up to eight
directions (see figure 1).

Figure 1: A small 8-connected grid map with one obstacle cell.

A grid world has two types of cells, traversable cells and obstacle
cells. Movement is only possible between traversable cells. The cost
of moving from one cell to another is the distance between the centers
of the cells. This is typically scaled such that horizontal and vertical
movement has cost 1, while diagonal movement has cost

√
2.

The good thing about this world representation is that it is easily
made compatible with graph searching algorithms. We can think of
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3.2 the polygonal world

each cell as a node, with edges to all of its non-obstacle neighbors.
The edge weights are then the cost of movement. For this reason we
can apply graph searching algorithms, such as Dijkstra’s algorithm
and A*, directly on the grid world.

The bad thing about grid worlds is that the grid structure restricts
movement to only eight directions. Some applications might require
the movement to be restricted, and in these cases the grid world is per-
fect. But if the grid world is used for pathfinding, where the agents
should be allowed to move freely you might end up with suboptimal
paths. This is illustrated on figure 2. The red path is found using the
grid world abstraction, and a more optimal path is marked in blue.

Figure 2: A path found using the grid world abstraction (red), and a
more optimal route (blue).

Grid worlds are also bad at representing environments with vary-
ing passage width. The problem comes when you have to decide on a
grid cell resolution. If you want to represent a detailed environment
with narrow passages the grid cells has to be small. But the smaller
you make the grid cells, the more of them you need. If you increase
of the number of grid cells, you increase the number possible paths
a pathfinding algorithm has to consider. So in order for pathfinding
algorithms to work as fast as possible, you need to increase the size
of the grid cells as much as possible without losing important detail.

3.2 the polygonal world

The other world representation we look at is the polygonal world.
Once again the world consists of traversable areas and obstacle areas.
These areas are in the polygonal world defined using polygons. An
example of a polygonal world is illustrated in figure 3.
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3.2 the polygonal world

Figure 3: A polygonal world, with obstacles marked in grey, and a
traversable area marked in white.

When we talk about polygonal worlds we will refer to two types
of corners: protruding corners and depressed corners. Protruding
corners bulge out from obstacles into the traversable area, whereas
depressed corners cave into obstacles (See figure 4).

Figure 4: A polygonal world with protruding corners (red) and de-
pressed corners (yellow).

These two types of corners are important to have in mind when
talking about the shortest path in polygonal worlds. If no obstacles
are present, the shortest path between two points will obviously be
a straight line. If obstacles are indeed present, the shortest path will
have to wrap around these obstacles. For the path to be as short as
possible, one would have to move in straight lines from one corner
to another, until the goal can be reached directly, as is illustrated in
figure 5.

Figure 5: The shortest path from one point to another in a polygonal
world.
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3.2 the polygonal world

In fact any shortest path in a polygonal world, can be described as
a list of moves from one corner to another. This can be specified even
further, by noticing that no shortest path will ever visit a depressed
corner, and therefore any shortest path can be described as a list of
protruding corners only. This means, when the algorithms search for
an optimal path, they can ignore all depressed corners.

A good thing about polygonal worlds are that they allow for any-
angle movement. This means that the pathfinding algorithms work-
ing on polygonal worlds are able to find the truly shortest path be-
tween two points, as opposed to those working on grid worlds. Polyg-
onal worlds also work very well with varying level of detail. As
opposed to grid worlds, parts of a polygonal environment can be
detailed, without forcing other parts to be detailed too.

One final thing to notice is that graph searching algorithms such as
Dijkstra’s algorithm and A* cannot be applied directly to polygonal
environments. A conversion of the world into a graph is needed.
In the grid world each point had a maximum of eight well defined
neighbors, which meant it could be interpreted directly as a graph.
Earlier we saw that the shortest path in the polygonal world can be
described by a list of protruding corners. If we define the neighbors
of a point to be all visible protruding corners, we can interpret the
polygonal world as a graph. Calculating visibility however is not
easy, since every protruding corner in the world is potentially visible.
This means we cannot hope to look up the neighbors in constant time;
at least not without preprocessing.

12



4

PAT H F I N D I N G A L G O R I T H M S

In this section we provide an in-depth explanation of how each pathfind-
ing algorithm works. We first look at two graph searching algo-
rithms; Dijkstra’s algorithm and A*. Following that, we look at two
pathfinding algorithms specifically designed to work on 8-connected
grid worlds; JPS and HPA*. Finally we switch over to the polygonal
world representation where we look at three pathfinding algorithms;
VG, VGO and BSP*.

4.1 priority queues

Before we look at the actual pathfinding algorithms, we provide a
quick explanation of the priority queue data structure. We felt like
we should do this first, as it is an integral part of all the following
pathfinding algorithms.

A priority queue is a data structure where each element has an as-
sociated priority. The priority is usually defined using a numerical
value, where a lower value equals a higher priority. The elements in
the queue is not necessarily sorted according to this value, but the
data structure should provide a method for extracting the element
with highest priority. We refer to this operation as the extract-min op-
eration, as the element with highest priority is the one with minimum
value. One should also be able to perform a decrease-key operation on
one of the elements, which serves the purpose of decreasing its value,
also known as its key, and thereby changing its priority in the queue.
Finally one should of course also be able to add elements to the pri-
ority queue, which is done using the insert operation.

We considered three different implementations of the priority queue;
an unsorted list, a binary heap and a Fibonacci heap. The time com-
plexities of the operations mentioned above using these three imple-
mentations are shown in the table below.
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4.2 graph algorithms

Operation Unsorted List Binary Heap Fibonacci Heap
extract-min O(n) O(log n) O(log n)*
decrease-key O(1) O(log n) O(1)*
insert O(1) O(log n) O(1)

Table 1: Time complexities of operations performed on a priority
queue of size n. Times marked with a * are amortized.

Among the three priority queues, the Fibonacci Heap seems to be
the fastest, however to see if this was also the case in practice we ran
some initial tests. Our tests confirmed that the Fibonacci Heap was
the overall fastest, therefore we decided to use this queue only.

4.2 graph algorithms

The two most well known pathfinding algorithms are Dijkstra’s algo-
rithm and A*. These were originally designed to work on graphs only,
but has since proved very useful for pathfinding in almost any world
representation, as many representations can be simplified to graphs.

4.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm was originally conceived by the Dutch computer
scientist Edsger W. Dijkstra in 1956 [2]. Dijkstra’s algorithm is an op-
timal pathfinding algorithm, originally designed to work on graphs.
Dijkstra’s algorithm is the most important optimal pathfinding algo-
rithm, as it formulates the core strategy that all other improved algo-
rithms use.

Dijkstra’s original implementation of the algorithm ran in worst
case O(N2) time, where N is the number of nodes in the graph. A
faster implementation was later discovered in 1984 by Fredman and
Tarjan [3], which achieve a worst case running time of O(E+ N log N),
where E is the number of edges in the graph.

Dijkstra’s algorithm takes as input a graph, a start node and a goal
node. It works in a similar fashion as breadth first search. It works its
way outward in all directions from the start node, visiting the nodes
that are closest to the start node first. As soon as it reaches the goal
node, it can trace back the shortest path from the goal node to the
start node. As it is searching it uses two sets of nodes, which we shall
refer to as the explored set and the frontier set. The frontier set is
implemented as a priority queue. We will see why in a moment.

An important concept of Dijkstra’s algorithm is the G value. Each
node in the graph has an associated G value. For nodes in the ex-
plored set the G value is equal to the length of the shortest path back
to the start node. For nodes in the frontier set it is only a temporary
estimate. For nodes not in these sets the value is undefined. In the
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4.2 graph algorithms

following illustrations we shall see how the G value is used to search
the graph for the goal node.

Figure 6: The nodes as they look after the first iteration of Dijkstra’s
algorithm.

In figure 6 we see a graph consisting of five nodes and seven edges.
Each edge has an associated weight, which determines the cost of
moving from one node to another along that edge. In this example we
are tasked with finding an optimal path leading from node a to node e.
For this and in the following illustrations we shall color the explored
nodes (those that are in the explored set) grey, and the frontier nodes
(those that are on the frontier set) green. The G value of each node is
written inside the nodes.

After the first iteration of the algorithm only the start node is in the
explored set, and only the start node’s neighbors are in the frontier
set. The G value of the start node is zero for obvious reasons. The
G values of the neighbors are calculated by adding the G value of
the start node to the weight of the edge connecting them, which is
in our case 1 and 4. Notice how the G value estimation of node b is
wrong (the shortest path back to the start node has length 3, not 4).
In fact of all the nodes in the frontier set, only the lowest estimated
G value is known to be correct. The reason for this is that this node
cannot be reached faster through any other node, as it is connected
to the explored set with the least weighted edge. We can therefore
add node c to the explored set, and move on to the next iteration (See
figure 7).
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4.2 graph algorithms

Figure 7: The second iteration of Dijkstra’s algorithm.

After the second iteration we can see, how the explored set now
consists of two nodes, as we picked the node from the frontier set
with the lowest G value and added it to the explored set. This will
not be the last time we extract the node with the minimal G value
from the frontier set, which is why we refer to this as the extract-min
operation.

After moving a node from the frontier set to the explored, we also
need to add the unexplored neighbors of this node to the frontier set.
This is done with the insert operation. In our case the neighbors of
node c is b and d. If a node is already in the frontier set, as is the case
of node b, we need to check if a lower G value can be estimated from
a path going back through c. In our case we are able to lower b’s G
value from 4 to 3. This, so called relaxation of the G value, is referred
to as a decrease-key operation.

We are now ready to perform another extract-min operation on the
frontier to see which node can be added to the explored set.

Figure 8: The third iteration of Dijkstra’s algorithm.

After the third iteration (Figure 8) we have three nodes in the ex-
plored set and two nodes in the frontier set. The most recently ex-
plored node is node b. When we added b to the explored we also
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4.2 graph algorithms

added e to the frontier set and relaxed the G value of d. Once again
we are ready to perform another extract-min operation.

Figure 9: The fourth and final iteration of Dijkstra’s algorithm.

In the fourth and final iteration (Figure 9) the goal node is added
to the explored set. As soon as the goal node is explored, we need
not explore anymore nodes. At this point we can trace back the path
from the goal node to the start node, which is guaranteed to be the
optimal path.

With this example in mind we can summarize Dijkstra’s algorithm
like so: We maintain a set of explored nodes, for which we have de-
termined the G values, and a set of frontier nodes, for which we have
estimated the G values. Initially only the start node is in the explored
set, but in each iteration we perform an extract-min operation on the
frontier set, to move one node over to the explored set. As we do this,
we make sure to add all unexplored neighbors of the extracted node
to the frontier set. If any of its neighbors are already in the frontier set
we reestimate their G value. If a path between the start and the goal
node exists we will at some point add the goal node to the explored
set, and at this point we can trace the optimal path back to the start
node. Our implementation follows this exact scheme, as can be seen
from the pseudocode found in the appendix.

Running Time

The running time of Dijkstra’s algorithm is highly dependent on the
implementation of the frontier set. In the worst case we perform an
extract-min operation for each node in the graph, and a decrease-key
operation for each edge in the graph. This gives us a worst case run-
ning time of O(E · Tdk + N · Tem), where E is the number of edges in
the graph, N is the number of nodes in the graph, Tdk is the time com-
plexity of the decrease-key operation, and Tem is the time complexity
of the extract-min operation.

If we implement the frontier set as an unsorted list, we can perform
the decrease-key operation in constant time, and the extract-min oper-
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4.2 graph algorithms

ation in linear time. This gives us a running time of O(E + N2). If we
implement the frontier set as a binary heap we get a worst case run-
ning time of O(E log N + N log N). And finally if we use a Fibonacci
heap we can improve the running time to O(E + N log N).

For graphs in general the number of edges is bounded to E ≤
O(N2) which gives us a worst case running time of O(N2 + N log N) =

O(N2). For 8-connected grid maps the number of edges is bounded
to E ≤ O(N) which makes Dijkstra’s algorithm run in O(N log N).
We can specify the running time even further if we think of where
each term came from. The extract-min operation is performed on the
frontier set each time we want to explore a new node, which gives
us a running time of O(X log F), where X is the number of explored
nodes and F is the average size of the frontier set. This shows us
that Dijkstras algorithm can be improved if we reduce the number of
explored nodes.

Pros and cons

There are both good and bad things to be said about Dijkstras al-
gorithm. The good thing is that Dijkstras algorithm formulates the
core strategy for searching a graph for the shortest path between two
nodes. Every other algorithm we look at is built upon Dijkstras algo-
rithm.

The bad thing is that it makes no assumptions about what the
graph looks like, other than it has positive edge weights. The graphs
generated from either polygonal worlds or grid worlds does have
features, which can and should be utilized to speed up the process.
These features include coordinates associated with each node, and in
the case of the grid world, a predictable ordering of the nodes.

4.2.2 A*

The next algorithm we look at is called A* (pronounced: A star). A*
was first described in 1968 by a group of researchers at Stanford Re-
search Institute [4]. This algorithm is an extension of Dijkstra’s algo-
rithm, which aims to improve upon the running time using heuristics.

Dijkstra’s algorithm was in some sense blindly searching the graph
for the goal node. It did not use the location of the goal node to
guide its search, which meant it would search with equal priority in
all directions. A* uses the fact that all nodes generated from spatial
domains have associated coordinates. These coordinates can be used
to measure how far a node is from the goal node using a distance
function. If we choose the right kind of distance function we hope
to make A* work faster than Dijkstra’s algorithm without sacrificing
optimality. We shall return to the distance function later, but first we
look at the changes A* has made to Dijkstra’s algorithm.
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4.2 graph algorithms

A* does not change the overall structure of Dijkstra’s algorithm. It
still creates an explored set and a frontier set and uses these to search
the graph. In each iteration it moves a node from the frontier set to
the explored set, but where Dijkstra’s algorithm moved the node with
the lowest G value, A* moves the node with the lowest F value. We
have not seen this F value before. The F value is the G value with an
added H value. The H value of a node is calculated using a heuristic
function, which estimates the path length to the goal node. The F
value is only relevant for nodes in the frontier set, as it is only used
to select which node to move from that set to the explored set. So to
summarize we give each node in the frontier set a G, H and F value:

• G: An estimate of the shortest path length to the start node.
• H: An estimate of the shortest path length to the goal node.
• F: The sum of G and H.

We can use this F value as a ranking of the nodes in the frontier set.
The node with the lowest F value is the node, which is most likely
to lead us to the goal node. This change could seem like it breaks
the algorithm, making it suboptimal, but if we do it cleverly, we can
create a heuristic function, which ensures the algorithm to still be
optimal.

For a heuristic to ensure optimality it needs to be consistent and
admissible [5]. For a heuristic to be consistent, it needs to ensure
that, if there is an edge between two nodes the difference in H value
between them is never larger than the edge weight. For the heuristic
to be admissible it must never overestimate the path length to the
goal node. In the following section we explain why an admissible
and consistent heuristic leads to a guaranteed optimal path.

Heuristic Requirements

The heuristic function can either underestimate, overestimate or some-
how know the path length to the goal node. Let us first consider the
case of a gross underestimation, namely the case where the H value
is always zero. If the H value is zero the F value will become equal to
the G value. If this is the case, A* will become identical to Dijkstra’s
algorithm, which means we have not really made it faster, but at least
we know it is still optimal.

Next we consider the case where the heuristic function always
guesses correctly, which means the H value is always the length of
the shortest path to the goal node. Let us denote the length of short-
est path between the start node and the goal node, P. In this case the
start node would have a G value of 0 and a H value of P, making the
F value also equal P. As we move along the shortest path towards
the goal node, the F value will remain constant, since the G value in-
creases by the same amount as the H value decreases. The F values of
nodes which are not part of the shortest path would be higher than P.
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4.2 graph algorithms

Since A* always chooses the node from the frontier set with the low-
est F value, it will explore only the nodes on the shortest path. So if
A* had access to some sort of oracle heuristic function, the algorithm
would be very fast and would still always find the optimal path.

Finally we consider the case where the heuristic function might
overestimate the H value. If this was the case one can imagine a
situation, where the H value of a node along the optimal path was
so large that the algorithm would completely disregard this node,
and instead find a suboptimal path with smaller H values. So if the
heuristic function sometimes overestimates the length of the shortest
path to the goal node, the algorithm will no longer be optimal. So as
long as the heuristic does not overestimate the path length to the goal
node and is consistent, we can be sure that the path found by A* is
optimal.

A* Heuristics

Let us look at a couple of heuristics and see how they work in a grid
map. On figure 10 we have illustrated the distance from the bottom
left corner to the top right, measured using three different distance
functions. The Manhattan distance is shown in blue, the Euclidean
distance is shown in red, and finally, what we shall refer to as the
move distance, is shown in green.

Figure 10: Three distance functions illustrated: The Manhattan dis-
tance (blue), the Euclidean distance (red) and the move
distance (green).

The Manhattan distance is the total difference between the coordi-
nates of the two nodes. The Euclidean distance is the straight-line
distance between the nodes. The move distance is the length of the
path between the two nodes, if you follow the rules for movement
in an 8-connected grid map, and no obstacles are present. The move
distance is admissible as the actual path can only be longer, such as
if obstacles are present. The Euclidean distance is also admissible as
it measures an even shorter distance, but the Manhattan distance is
not admissible as it overestimates the path length. Now let us look at
how A* performs in a grid map using these heuristics (See figure 11).
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4.2 graph algorithms

Figure 11: A*s behavior using different heuristics. Move distance
(left); Euclidean distance (Middle); Manhattan distance
(Right). The found path is marked in red, while explored
nodes are marked in grey.

Here we see a pathfinding problem solved using three different
heuristics in combination with A*. The objective here is to find a
path from the top left corner to the bottom right corner. The path is
marked in red, and the explored nodes are grey.

Both the Euclidean distance and the move distance provides us
with optimal paths. The Manhattan distance on the other hand does
not. But notice the amount of explored nodes when using the Man-
hattan distance. This shows that an overestimating heuristic might
lead to a shorter search time, at the expense of optimality. Also note
the difference between the Euclidean distance and the move distance.
Fewer nodes are explored when using the move distance, as it comes
closer to correctly estimating the correct path length to the goal node.
Based on these considerations we have chosen to stick with the move
distance when A* is used in the grid world.

We have not yet considered the heuristics used in the polygonal
world, but the same rules apply. We want to make sure we never
overestimate the distance to the goal node, however we also do not
want to underestimate more than necessary either. In a flat polygonal
world with no obstacles, the length of the shortest path to the goal
node is the Euclidean distance. If obstacles are added, the path might
become longer. This makes the Euclidean distance the best heuristic
for use in the polygonal world.

Pros and cons

A* is a considerable improvement over Dijkstra’s algorithm. It uses
a heuristic to guide it towards the goal node, instead of searching
blindly in all directions. This leads to fewer explored nodes, and
therefore a faster running time. We have not payed much attention to
the memory usage, but what we can say is with fewer explored nodes
the maximum amount of memory required is also reduced. See figure
12 for an example of the improvement over Dijkstra’s algorithm.
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4.3 grid algorithms

Figure 12: The same pathfinding problem in an 8-connected grid
world using Dijkstras algorithm (left) and A* (right). The
path is marked in red, and the explored nodes are marked
in grey. The start node is in the top left corner and the goal
in the bottom right corner.

A* shines when the heuristics are guiding the algorithm in the right
direction, but some worlds might have dead ends. This slows down
the algorithm, and the worst case running time is in fact not improved
over Dijkstra’s algorithm. A* will most of the time explore fewer
nodes than Dijkstra’s algorithm, but some maps might force it to
explore every node before the goal is reached.

4.3 grid algorithms

The algorithms described in this section are specifically designed for
solving the pathfinding problem in 8-connected grid worlds. Dijk-
stra’s algorithm and A* works on both graphs and on grid maps, but
the following algorithms works on grid maps only.

4.3.1 Jump Point Search (JPS)

JPS is a recently developed pathfinding algorithm, for use on 8-connected
grid maps. It was first described in 2011 by Daniel Harabor and Al-
ban Grastien from The Australian National University [6].

JPS sets out to tackle one fundamental issue with the grid world
representation. Grid worlds typically feature a high degree of sym-
metry. Symmetry in this sense is seen, when many different paths,
that share the same start and end points, have the same length, but
go through different nodes. Symmetry is especially present in large
open areas with no obstacles, as seen in figure 13. Here, conventional
algorithms are forced to explore a large number of nodes without
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making any real progress, whereas JPS quickly finds special nodes of
interest called jump points, which is used to quickly skip these areas.

Figure 13: Several paths of equal length connects the blue and the red
node.

JPS is built upon A*. It uses the same structure with an explored
set, a frontier set and a ranking based on the F value. What separates
JPS from A* is the successor function. In the case of both Dijkstra’s
algorithm and A*, the successors of a node was its neighbors (exclud-
ing those already in the explored set). JPS uses a different successor
function, which exploits the ordering of the nodes inherent in the
grid world.

In figure 14 we have illustrated a situation, where we are interested
in finding the successors of the green node. We can start by ignoring
the node we came from, referred to as our parent node, as it has al-
ready been explored. Secondly we can ignore the nodes diagonally
behind us, as they can be reached directly from our parent node. The
same goes for nodes above and below us. The two nodes diagonally
ahead of us are ignored too, since we can choose to prefer the sym-
metric paths going through the nodes above or below us.

Figure 14: In this figure we want to find successors of the green node.

This leaves us with only one possible successor, but by the same
argument, this node also only has one successor. So instead of taking
one step at a time, we may as well jump as far as we can in the
horizontal direction. We keep skipping past nodes until, we reach a
node with a so called forced neighbor. In figure 14 the blue node has
a forced neighbor behind the obstacle. Normally we do not have to
look at the nodes diagonally ahead of us, but because of the obstacle
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we are forced to look at it, hence the name. The blue node becomes
the only successor of the green node.

Figure 15: The green node has no successors.

Another case to consider, is if we reach an obstacle directly in front
of us, as is illustrated in figure 15. Here we can safely conclude
that no successors to the green node were found, as we have already
assumed that the nodes above and below are preferably reached via
other paths. Similar examples can be given for movement in the two
vertical directions as well as in the other horizontal direction, but
when we are moving diagonally it is slightly more complicated.

Figure 16: The green node has its parent diagonally behind it.

In figure 16 we see a node marked in green, with its parent diago-
nally behind it. We can see how five of its neighbors can be ignored,
as they are more easily reached through other nodes. The neighbors
above and to right can be reached by symmetric paths from the par-
ent, however here we prefer the path going through the green node.
If obstacles are present we might be forced to consider even more
neighbors, as is illustrated in figure 17.

Figure 17: The green node is forced to consider four neighbors.
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When moving diagonally we have three or more neighbors to look
at. This makes it a little harder to jump forward like we did in the hor-
izontal example. In figure 16 two of the neighbors require horizontal
or vertical movement, so we can start by expanding these, and see if
there are any nodes with a forced neighbor in these directions. Next
we take another step in the diagonal direction and repeat the process
of searching horizontally and vertically. This leads us to the situation
illustrated on figure 18. In this case the successor of the green node
is the blue node, since it is in line of sight of a node with a forced
neighbor.

Figure 18: A node (green) is searching diagonally for successors. A
successor node (blue) is found, since it is in line of sight of
another node, which has a forced neighbor (purple).

With these tricks in mind we can summarize the successor function
like so: We start by fetching all the neighbors like we did with A*. We
then perform a pruning step, where we remove the neighbors that are
more easily reached from our parent. If no parent exists, such as in
the case of the start node, we do not prune any of the neighbors. We
then call a recursive function on each of the remaining neighbors, in
which we expand them outwards looking for forced neighbors. Some
of the expanded nodes might not lead to a forced neighbor, which
means they can be ignored. This leaves us with only a few successors,
which might lie several steps ahead of us.

Pros and cons

JPS manages to seriously reduce the number of explored nodes. On
figure 19 we can see the amount of explored nodes by JPS as com-
pared to A*.
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Figure 19: A* (left) compared to JPS (right), with explored nodes
marked in grey.

On the surface it looks like JPS only visits a very small amount of
nodes, but the truth is that many more nodes are visited. Even though
only a few nodes are added to the explored set, the successor function
does visit many more nodes. This means that the theoretical worst
case running time is not improved over Dijkstra or A*. Whether or
not JPS is faster in practice remains to be seen from the experiments.

4.3.2 HPA*

In their 2004 article Near-Optimal Hierarchical Pathfinding Adi Botea,
Martin Mller and Jonathan Schaeffer describes, how pathfinding in 8-
connected grid maps can be speeded up using a hierarchy of abstract
maps [7]. The 8-connected grid map is located at the bottom of the
hierarchy. Above that is a less detailed abstraction, in the form of a
graph. Further levels can be built on top, however in this report we
consider a hierarchy with only one abstract layer. The main idea is
then to use the abstract layer to quickly find an approximate path, and
use this to speed up pathfinding in the original map. The drawback
is that optimality is no longer guaranteed.

The abstract layer is created by first splitting the grid map into
equally sized squares. We shall refer to these squares as clusters. In
figure 20 we have illustrated a grid map which has been split into six
10x10 clusters (This is the cluster size used in our implementation).
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Figure 20: A grid map split into 6 clusters.

Once the grid map has been separated into clusters, we can start
the creation of the abstract graph. First we need to choose which cells
in the grid map should be used as nodes in the abstract graph. We
define entrances as the traversable areas between clusters. For each
entrance with a width of 5 or smaller, we mark the node pair in the
middle of the entrance. If the width of an entrance is larger than 5,
we mark the nodes furthest apart in the entrance. The result of this is
shown on figure 21.

Figure 21: Node pairs at each entrance is marked.

In the abstract graph, the nodes in each marked pair are connected
with an edge. We call these edges for inter-edges as they connect
nodes across different clusters. The weights of the inter-edges are
always 1 since the nodes are neighbors to each other in the grid map.

Next we need to create the intra-edges. Intra-edges connect nodes
inside each cluster. We do this by pathfinding from each node in a
cluster to every other node in that cluster. If a path exists between
two such nodes, we create an intra-edge with weight equal to the
path length found. In figure 22 intra-edges has been added to the
abstract graph.
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Figure 22: Both inter- and intra-edges has now been created.

At this point the overlaying abstract graph is done. Note that ev-
erything we have done so far is independent of the location of the
start and goal position, which means we can do this once to speed up
all future pathfinding queries. That is however only if the map does
not change.

When we want to pathfind we have to start by inserting the start
and goal node into the abstract graph. We want to connect the in-
serted node to all other nodes belonging to the same cluster. This
is done by letting Dijkstra’s algorithm create a shortest path tree for
the cluster, with the inserted node as source node. When such a
tree is done it tells us the path lengths from the inserted node to all
other nodes in the same cluster. These path lengths are then used
as weights for the connecting edges. With the start and goal node
added to the abstract graph, we are ready to perform the next part
of the pathfinding. First a path is found in the abstract graph using
A*, connecting the newly added start and goal nodes. This path is
then used as a list of partial goals as A* searches the grid map for
the final path. By first calculating an approximate path we can avoid
most dead ends, which should shorten the running time.

Pros and Cons

HPA* is able to avoid large dead ends of the map, which the other
algorithms struggle to get around. It does this by first calculating an
approximate path in the abstract graph. It then uses this approxima-
tion to guide the A* algorithm through the grid map to find the final
path. While this may speed up the process it comes at the expense of
path optimality. Since the final path is based on an approximate path
we can no longer guarantee that it is optimal, however the path length
is not more than 1 % longer than the optimal grid path length [7]. An-
other downside is the reliance on a preprocessing step. If the map is
constantly changing, we do not have the luxury of a preprocessing
step. However, if only a single node in the grid map changes, any
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recalculations of the abstract map need only be done for the affected
clusters.

4.4 polygonal algorithms

Pathfinding in polygonal worlds are, in contrast to pathfinding in
grid worlds, confronted with the problem of a continuous world.
In this world we have to consider an infinite number of valid posi-
tions. One of the main challenges is to choose which positions to
consider. The algorithms in this section describe methods for solving
the pathfinding problem for polygonal worlds. The algorithms are all
optimal, in the sense that they always return the shortest path.

4.4.1 Visibility Graph (VG)

The most basic optimal algorithm for pathfinding in polygonal worlds
relies on the construction of a visibility graph. A visibility graph de-
scribes, which corners can be seen from each other. Visibility graphs
are created by connecting every corner with every other corner in
line of sight. In figure 23, the visibility graph of a polygonal world is
illustrated.

Figure 23: A polygonal world, with its visibility graph, consisting of
nodes and edges.

Previously we explained how the shortest path between two posi-
tions, can be described by a list of protruding corners only. Therefore,
in the context of pathfinding, the depressed corners can be excluded
from the visibility graph. In figure 24 the visibility graph used for
pathfinding is illustrated.
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Figure 24: The visibility graph used in the context of pathfinding.

The graph is independent of the start and goal positions, which
means it can be created in preprocessing. When the algorithm is then
given a start and goal position it starts by inserting them into the
graph, by connecting them to every protruding corner in line of sight
(see figure 25).

Figure 25: The start and goal nodes are added to the graph at
runtime.

Once the start and goal nodes have been added, a graph searcher
can be used to find an optimal path from the start node to the goal
node (see figure 26).

Figure 26: The shortest path between two positions in the polygonal
world.
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To summarize this gives us the VG (Visibility Graph) algorithm: A
visibility graph is created in preprocessing, the start and goal node
are inserted at runtime, and A* is used for connecting the start and
goal node.

To create the visibility graph we first created a BSP (Binary Space
Partitioning) of the world. Using this we were able to quickly find all
visible corners as seen from any given point. We used it to calculate
the visibility of each protruding corner to form a graph similar to the
one in figure 24. No edge weights had to be stored in the graph as
these were always the distance between each corner, which is quickly
calculated at runtime. The BSP was also used when the start and goal
node had to be inserted. The technicalities of how a BSP works is
discussed in more detail under the section about the BSP* algorithm.

Pros and Cons

The benefit of this approach is, that during pathfinding, instead of
considering the infinite number of positions existing in a polygonal
world, the algorithm only consider positions of protruding corners.
This, not only speeds up the pathfinding by itself, but it also permits
the transformation of the problem into a graph searching problem,
which we know how to solve. The drawback is that the heavy pre-
processing makes the algorithm less suited for dynamic maps. If the
map is dynamic a new visibility graph has to be calculated every time
the map changes.

4.4.2 Visibility Graph Optimized (VGO)

The next algorithm we look at is the Visibility Graph Optimized
(VGO). This algorithm is an extension of VG. It exploits two prop-
erties of the polygonal world that we discovered, which we hope can
improve the running time. These properties lead us to both VGO,
and BSP*. In this section we describe the two properties, as well as
the VGO algorithm, and in the following section we describe the BSP*
algorithm.

Property One

For every protruding corner in a polygon, we can split the traversable
area around that corner into three separate areas. We will refer to
these areas as A, B and C. A and C are the areas that lie on opposite
sides of the corner, and B is the area in front of the corner. The bor-
ders of the areas are defined by the extension of the two line segments
that constitutes the corner. This is all illustrated in figure 27.
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Figure 27: The traversable area around every protruding corner can
be split into three separate areas.

Consider a situation during pathfinding, where we have positioned
ourselves somewhere in the B area in figure 27. At this point we
should either move to a visible protruding corner, or, if the path is
unobstructed, move straight to the goal position. The question re-
mains: should we ever consider moving to the protruding corner
marked in red in figure 27? The answer is no, since any position, in
the traversable area, is better reached, either directly or through other
protruding corners. This also follows from the fact, that no straight
line connecting a position in area B to a position in area A or C, will
ever go through this protruding corner.

Now consider the opposite situation where we stand at the pro-
truding corner in figure 1. Then, by the above, we can conclude, that
our previous position must have been in either area A or C. Lets say,
without loss of generality, that our previous position was in section A.
The question is now: Should we consider moving to any protruding
corner in section B? Again the answer is no, since any position in
section B are better reached from our previous position in section A,
either directly or via other corners than the one marked in red. This
means, when we are standing at a protruding corner, then we can
ignore those other protruding corners, that lie in the B area defined
by the corner we stand at. This applies for any protruding corner,
but the angle around different corners may vary. Because of this the
B area will either be wide or narrow.

To summarize, we can say that each corner has an associated B
section, which is an area extending out in the direction the corner is
pointing. If a corner is pointing towards us such that we are located
in its B section, we can ignore it when pathfinding. Furthermore, if
we stand on top of a corner, we can in general ignore all other corners
located in the B section defined by our corner (See figure 28).
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Figure 28: We want to find a path from the green node to the blue
node, and we have just arrived at the red node. Because of
Property One, we can at this point ignore all the protrud-
ing corners marked in yellow.

The result of this property is that we can ignore specific protruding
corners, depending on where we are. The number of protruding
corners to consider is therefore minimized even further. This property
can be applied during preprocessing to minimize the visibility graph,
as it is a static property that is independent of the start and the goal
position. If no preprocessing is allowed we can apply it at runtime
instead.

Property Two

We can now ignore both depressed corners as well as any protruding
corner adhering to Property One. The remaining corners all have
something in common: they obscure the area behind them. In this
sense, all remaining corners cast a shadow as seen on figure 29.
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Figure 29: Seen from the blue dot, the areas marked in yellow are in
shadow.

Any point which is not in shadow is best reached directly. This
means that a path going through one of the remaining corners, is
only optimal if it leads to somewhere in shadow. Now consider the
situation, where we have moved to one of these corners. At this
point, only the traversable area, which was previously in shadow, is
of interest, since everything else is better reached from our preceding
position. This means, that whenever we arrive at a corner we should
check, where we came from, and use this to limit the area, in which
we search for succeeding positions. This property cannot be applied
during preprocessing, as it relies on the preceding position which is
only defined during pathfinding.

VGO

The Visibility Graph Optimized algorithm (VGO), is an extension of
the the basic visibility graph algorithm (VG). It still builds a visibility
graph, however it reduces the number of edges in the graph using
Property One. To give an idea of how many edges are pruned by
Property One refer to figure 30:
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Figure 30: On the left we see the visibility graph used by the VG algo-
rithm (VG). On the right we see what is left of this visibility
graph after we have applied property one (VGO).

At this point we are left with a visibility graph consisting of only
protruding corners, and edges not removed by Property One. This,
in fact, is a minimal visibility graph for pathfinding, since all edges
are used in at least one optimal path. This can be seen from the fact,
that all edges connect corners, where none of the corners are located
in the B section of the other corner. This implies that at least one of
the line segments that constitutes each corner, is not visible from the
other corner, and a shortest path from a point on one of those line
segments to a point on the other line segment, must go through the
edge.

At runtime the start and goal nodes are added to the graph, and
pathfinding is done using A*. Property Two is used at runtime to
limit the number of protruding corners to consider even further.

Pros and cons

A definite improvement over the VG algorithm is a reduced visibil-
ity graph. This not only speeds up pathfinding, it also reduces the
amount of memory required. We also apply Property Two at runtime
to ignore corners, but this requires an extra bit of calculation, which
might not be worth it. It remains to be seen if Property Two effects
the algorithm positively or negatively in comparison to VG.

4.4.3 BSP*

The final algorithm we look at is called BSP*. BSP* is our contribution
to the field, and is meant for use in dynamic polygonal worlds. The
algorithm relies on a Binary Space Partitioning (BSP) in combination
with A*. It utilizes the BSP’s ability to early terminate when search-
ing for visible corners. For the algorithm to be dynamic we have to
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create a new BSP prior to each pathfinding query, however this is
done relatively fast as compared to the pathfinding itself. Another
possibility would be to create the BSP in a preprocessing step, but
then we would not be able to consider it as being dynamic.

A BSP partitions the world into a tree like data structure. It does
this by choosing a random line segment from the polygonal world,
which is used to split the rest of the line segments into two groups.
The line segments, that lie to the left of the chosen line segment, are
placed in one group, and those to the right in the other group. If a
line segment has end points on either side of the chosen line segment,
it is split into two line segments which are placed in opposite groups.
In this sense the chosen line segment is used to cut the space into two
halves. The algorithm recurses on each group to create a binary tree
structure of line segments. At the leaves of the tree are the empty
areas that has no line segments in them.

When such a structure has been created, we can use it to quickly
calculate visibility as seen from any given point. When traversed
correctly the BSP tree will visit the line segments in order, such that
the line segments that lie closest to the given point are visited first.
We can therefore be sure that a visited line segment never covers
an earlier visited line segment. Consider for instance the first line
segment visited by the BSP. For this segment we can be certain that
the corners at each end are visible, so we add them to a list of visible
corners. Subsequent line segments might be fully or partially covered
by the line segments already visited. This means we have to keep
track of what parts of our view field have already been covered. Each
line covers an angular interval of our view field as is illustrated in
figure 31. Each time we visit a new line segment we have to add its
angular interval to a list of intervals. If two such intervals overlap
we can join them to form one interval instead. In the worst case we
cannot join any intervals, which makes the list of intervals grow large.
We shall see in a bit how this affects the running time.
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Figure 31: A point marked in blue from which we want to calculate
visibility. So far the BSP has returned the three closest line
segments, which means that certain angular intervals of
our view field are blocked (marked in red).

We can stop this procedure as soon as the angular intervals cover
our entire view field. This is what we call early termination. This is an
important part of why we are able to speed up the process. Property
Two told us that the area, in which we have to search for successor
points, can be significantly reduced if we take our preceding position
into account. In figure 32 we have marked in red the angular interval,
which can be ignored because of Property Two, when we stand at
the corner marked in blue. This means that Property Two combines
especially well with the BSPs ability to early terminate, since we have
already from the beginning of the traversal of the BSP tree excluded
a large part of our view field, which means that the early termination
is not many steps away.

Figure 32: If we at some point have to search for successor points, we
can use our preceding position (grey dot) to limit the area
in which we have to search (we only have to search the yel-
low area). This leads to an even earlier early termination,
when used in combination with a BSP.

We can summarize the entire algorithm like so: We start by creating
a BSP of the polygonal world. We then use the BSP to check, which
protruding corners are visible from both the start position and the
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goal position. From there on we use A* to move from corner to corner
all the way from start to goal. Instead of relying on a visibility graph,
we rely on the BSP tree to calculate visibility every time we need it.
In this process we can exclude all depressed corners and also those
protruding corners adhering to Property One. Property two helps us
limit the angular search space each time we have to calculate visibility.
As soon as A* reach a corner, that is visible from the goal position,
we have found an optimal path.

4.4.3.1 Runnning Time

BSP* uses A* to decide which corners should be explored. A* has a
theoretical worst case running time of O(E + N log N), but this was
assuming that the successor points at each iteration could be retrieved
in constant time, as is the case with graphs and grid maps. BSP* has
to do a visibility calculation at each iteration. The running time of this
calculation is highly dependent on the size of the BSP tree. Therefore
we should figure out the worst case size and the expected size of the
BSP tree.

To figure out the worst case size of the BSP tree, consider the polyg-
onal world illustrated on figure 33.

Figure 33: Line segments of a particularly bad case of a polygonal
world.

Here we have N horizontal line segments and N vertical line seg-
ments. When constructing the BSP tree we choose random line seg-
ments, which splits the world in two, followed by a recursion on each
half. Consider the case where we choose the top most horizontal line
segment as the first splitter. It will intersect N times with the vertical
line segments. The left child of the first node in the BSP tree will
therefore have N small vertical line segments. The right child will
have N − 1 horizontal line segments and N vertical line segments.
In the worst case the line segments in left child will split off one at
a time, creating a very unbalanced subtree of depth N. In the right
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child we choose the second from the top horizontal line segment as
the splitter. This creates a similar situation to the one we started with;
its left child will have N small vertical line segments, and the right
side will have N − 2 horizontal line segments and N vertical line seg-
ments. If we continue doing this we create N subtrees, each with
depth N, which gives us the tree illustrated on figure 34.

Figure 34: The worst case BSP tree created by the line segments from
figure 23. The number of line segments to consider at each
recursive call in the construction of the BSP tree is written
inside the nodes.

From this we can see that the worst case tree size is O(N2). We
can also see that at each recursive call we have to check for O(N)

intersections to create the child nodes, which gives us a worst case
construction time of O(N3). Luckily this only happens approximately

1
NN2 of the time, which means it only happens one googolth of the
time for N as small as 10.

A much more interesting theoretical analysis is to figure out the
expected size and expected construction time of the BSP tree. Let us
define l(si) as the line that contains segment si, and let us define ci
as the number of intersections made by l(si). The expected number
of splits done, at BSP construction, by si is log(ci) [8]. And since
ci is bounded by N the expected number of splits per segment is
bounded by log(N). This means we get an expected size of the BSP
tree of O(N log N). Bounding ci by N is a very high bound though,
and initial testing showed us that the average ci is below 0.05 · N for
all map types. This means that the N term inside the log part has
a very small constant. What is also interesting is that this ratio goes
down as N goes up, which means that the expected size is O(N)

for all practical purposes. This means that the expected construction
time is O(N2).
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So now we have a BSP tree with size O(N). Next we have to use it
to calculate visibility. For this we have to traverse the tree and retrieve
the line segments in order from closest to furthest. This can be done
in linear time since we only recurse on each tree node once. We also
have to maintain a list of angular intervals though. If we maintain the
list of angular intervals as a sorted list we can insert a new interval
in logarithmic time using binary search. If intervals overlap we can
join them, but in the worst case no intervals are joined and the size of
the list grows to O(N). Which means it takes O(N log N) time in the
worst case to insert all angular intervals. The probability of having
no overlaps is very small though and in practice we join almost all
intervals, which gives us an expected running time of the visibility
calculation of O(N).

We do a visibility calculation every time we explore a new corner,
and in the worst case we explore every protruding corner. We there-
fore expect to perform at most O(N) visibility calculation. The total
running time of BSP* is described in the table below:

Worst Case Expected Case
BSP Tree Size O(N2) O(N)

Visibility Calculation O(N2 log N) O(N)

BSP* Running Time O(N3 log N) O(N2)

Table 2: Worst case and expected complexities for BSP*, where N is
the number of corners in the polygonal world.

This shows us that BSP* performs rather poorly in the worst case,
but the expected running time looks much better. It does however
still have a worse expected running time than all the other algorithms,
in fact its expected running time is worse than the other algorithms
worst case running times. If one had to improve on the expected
running time, one would either have to come up with a sublinear
visibility calculation or an improvement to A*, which guaranteed to
explore a sublinear amount of corners.

Pros and cons

BSP* is to our knowledge the only optimal pathfinding algorithm
meant for dynamic polygonal maps. This means that even if it is
outperformed by all the other algorithms, it is still the best algorithm
for finding optimal paths in dynamic polygonal worlds. We do not
expect BSP* to be faster than the algorithms relying on preprocessing.
We do hope for BSP* to be faster than A* and JPS on at least some
maps.

As a developer you are usually forced to use the grid world repre-
sentation, if you plan on implementing dynamic maps. BSP* opens
up the possibility of using the polygonal representation even if the
map is dynamic. It does have a worse expected running time than
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all the other algorithms. This means that on large enough maps we
expect it to perform worse than all the others.
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5

S E T U P

In this and the following chapters, we describe and discuss our ex-
periments. In this chapter we explain the setup of our experiments,
and in the next chapter we describe and discuss each map in detail.
Following this, we discuss our findings in general. We created several
maps with different structures and sizes. The algorithms we look at
are:

• Grid Algorithms:

– Dijkstra
– A*
– JPS
– HPA*

• Polygonal Algorithms:

– VG
– VGO
– BSP*

The map types we look at are:

• Star
• Lines
• Checker
• Maze
• MazeScale
• MazeCor5

Hardware

Our experiments were performed on a 1.4 GHz Intel Core i5 proces-
sor, with 8 GB 1600 MHz DDR3 ram, using the operative system OS
X Yosemite.

Creating the Maps

Here, a general explanation is given of how the maps were created.
In order to properly test our algorithms, we needed grid maps and
polygonal maps of varying size. The grid maps were generated from
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black and white images of varying size. The images were either cre-
ated with the use of a standard paint editor or in the case of our maze
maps with an online generator.

The polygonal maps were created from the grid maps. We devel-
oped an algorithm (See appendix) that were able to detect the shape
of the non-traversable grid cells and then create a polygon around
this shape. With this method we were able to, not only create polyg-
onal maps in a relatively fast and systematic way, but also to have
some sort of direct conversion between the worlds. This allowed for
our algorithms to be compared across both world representations. In
figure 35 an example of a black and white image is given, together
with the resulting grid map and polygonal map.

Figure 35: An example of a simple black and white image that is con-
verted into a grid map and a polygonal map.

Smoothing

For some maps we also performed a smoothing operation on the
polygonal representations. The smoothing maintained the general
shape of the map, but removed jagged walls as illustrated on figure
36.

Figure 36: An example of a map before and after smoothing.

It is hard to compare algorithms across world types, but we thought
that if someone ever chose to go with a polygonal representation of
theirs maps, they would not make the walls jagged. If jagged walls
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are what you want, you might as well go with a grid world repre-
sentation instead. Smoothing reduces the number of edges in the
polygonal world, but instead of seeing this as an unfair advantage
given to the polygonal algorithms, we see it as something inherent to
polygonal worlds.
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6
R E S U LT S

In this section we present our results for each of our different map
types.

6.1 the star map

The first world type we look at can be described as an open world
with obstacles. It is a world with no deep dead ends. Instead, it
is populated with obstacles of limited size, that are evenly spread
throughout the world. It exemplifies landscapes where the overall
direction can be kept during pathfinding, but where small detours are
needed to get around obstacles. This could for example be movement
in a city by foot. To simulate this kind of world, we use the Star Map
(See figure 37). The reason, we call it the Star Map, is because we have
chosen the star shape for all the obstacles. We chose the star shape for
obstacles as it has more detail than just squares or circles including
small dead ends, letting it represent a wider range of obstacle shapes.

Figure 37: The Star Map with a side length of 500 pixels.
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6.1 the star map

For this world type we measured the performance of the algorithms
in maps with a side length of 100, 200, 300, 400 and 500 pixels. We
created the different map sizes by cropping out sections of the biggest
map, such that the size of the obstacles remained the same. This made
it resemble smaller and smaller portions of the same kind of terrain
(See figure 38).

Figure 38: A depiction of how we cropped out smaller and smaller
maps from the biggest map.

For each map we measured the time it took to find the shortest
path from the center of the map to each of the four corners, and
then we averaged the time. The reason for picking the center of the
map instead of a corner, was that if we started in a corner then some
directions would already be excluded for pathfinding. It would then
be less clear for us to see the effect of the heuristics. The reason for
not just measuring one path, instead of four, was that we wanted to
measure the algorithms’ overall ability to navigate in this world type.
The results for pathfinding in this map can be seen in figure 39.
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6.1 the star map

Figure 39: Results for pathfinding in the Star Map.

From the pathfinding results in this map we can see that Dijkstra
is significantly slower than all the other algorithms. For the largest
map Dijkstra uses between 1 and 2 seconds. We also see that VG,
VGO and HPA* are the fastest. For all map sizes their running time
is below 10 ms. In between lies A*, JPS and BSP*, with BSP* being the
slowest of the three. What separates VG, VGO and HPA* from the
other algorithms is that they preprocess the map before pathfinding.

If we now only consider the dynamic algorithms: Dijkstra, A*, JPS
and BSP*, we can see that Dijkstra stands out from the others. This is
probably because Dijkstra is the algorithm that does not use a heuris-
tic to guide it towards the goal. In this map, since the overall direction
can be kept during pathfinding, the heuristics provide good guidance
for A*, JPS and BSP*. In figure 40 this is exemplified by showing how
many grid cells Dijkstra and A* explores respectively.
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6.1 the star map

Figure 40: Explored areas are marked in grey. Dijkstra (left) explores
significantly more grid cells than A* (right), before a path
is found from the center to the bottom right corner.

Figure 41: Results for preprocessing the Star Map.

Only three of our algorithms perform preprocessing prior to pathfind-
ing, namely VG, VGO and HPA*. For the Star Map their time mea-
surements for preprocessing is depicted in figure 41. The fastest pre-
processing time is found with VGO. Worth noticing is it that VGO’s
preprocessing time is about the same as Dijkstra’s pathfinding time.
This shows us that the algorithms that perform preprocessing would
have had problems if the map had been dynamic.
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6.2 the lines map

6.2 the lines map

With the Lines Map we wanted a map with big dead ends, such that
large detours was needed, as opposite to what was seen in the Star
map. We wanted the map to be somewhat like a maze, but instead of
many narrow corridors, as is typically seen with mazes, we wanted it
to have big open spaces. With this setup we expected the pathfinding
time for Dijkstra and A* to be similar, as A* would not have much
use of its heuristics. Furthermore we wanted to see if JPS had some
benefits compared to A*, when it came to exploring big open spaces.

The Lines Maps were created by hand in a paint editor. We created
Lines maps with side lengths of 100, 200, 300, 400 and 500 pixels. In a
similar fashion to the Star map, we created each map size by cropping
out different sizes from the biggest map. The start position in each
map was the top left corner and the end position was the bottom
right corner. For each map size we made sure that the shortest path
between the start and the goal position followed an overall Z-like
pattern, such that the algorithms could not benefit too much from
using heuristics (See figure 42 and 43). The results for pathfinding in
the Lines map can be seen in figure 44.

Figure 42: The Lines map with 100x100 pixels (left) and 500x500 pix-
els (right). The shortest path is marked in red.
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6.2 the lines map

Figure 43: The polygonal counter parts of the maps seen in figure 42.

Figure 44: Results for pathfinding in the Lines Map.

The first thing to notice is that the pathfinding times for Dijkstra
and A* are very similar. This shows us that using heuristics is not
always of benefit. JPS is much better than both Dijkstra and A*.

BSP* performs better than the other dynamic algorithms. A simple
explanation for this, is that larger spaces leads to an increased number
of grid cells, but not necessarily an increased number of corners. This,
in turn, leads to a slowdown of the grid algorithms only. However,
for the larger maps the difference between JPS and BSP* seems to
become smaller. This suggests that BSP* spends more time per corner,
than JPS spends per grid cell. Since the number of corners and grid
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6.3 the checker map

cells both grows linearly in the map size, one would expect that BSP*
would be slower than JPS, if the maps were even larger.

Figure 45: Results for preprocessing the Lines Map.

When it comes to preprocessing (See figure 45), we first notice that
HPA* uses approximately the same time in this map as in the Star
map for all map sizes. We also notice that VGO is faster than VG.
This was also the case in the Star map, implying that the optimiza-
tion used in VGO has an effect on the preprocessing time. The only
difference between this map and the Star map, is that VG and VGO
is faster in this map. This is most likely because of a smaller amount
of protruding corners.

6.3 the checker map

With the Lines map we saw how the polygonal algorithms had an ad-
vantage when the map had big open spaces. With the Checker map,
we wanted a map that was as bad as possible for the polygonal algo-
rithms, while being easy to handle for the grid world algorithms. We
needed a map that has many protruding corners and no open spaces.
With such a setup the polygonal algorithms would have many more
corners to consider, while at the same time making little progress
with respect to getting closer to the goal position. The map we came
up with consists of many small polygons arranged with narrow pas-
sages in between.

We tested map sizes of 20, 30, 40, 50 and 60 pixels. For each map
size we measured the time it took to pathfind from the center of the
map to each corner. We averaged the four running times to get an
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6.3 the checker map

estimate of the overall performance of each algorithm. The smallest
maps for each world representation are depicted in figure 46.

Figure 46: The 20x20 Checker maps.

While the number of neighbors for the 8-connected grid map is
bounded by 8, the number of neighbors in a polygonal world is the
number of visible protruding corners. For this map type this value
explodes as the side length of the map increases. This is the reason
why we have not tested maps beyond 60x60 pixels. In figure 47 the
visibility graph for the above polygonal world is depicted after be-
ing preprocessed by VG. If the map side length is n there are O(n2)

protruding corners. From each protruding corner we can see O(n)
other protruding corners. The total number of edges in the map is
therefore O(n3). This means that in figure 47 there are approximately
203 = 8000 edges. For the biggest Checker map with a side length
of only 60 pixels, there are approximately 603 = 216000 edges in its
visibility graph.
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6.3 the checker map

Figure 47: The visibility graph created by VG (Edges marked blue).

Figure 48: Results from pathfinding in the Checker map.

From figure 48 we can see that BSP* is the slowest pathfinding algo-
rithm in this map. This is no surprise, as it is a polygonal algorithm
with no preprocessing. The other two polygonal algorithms, VG and
VGO, do preprocess the map prior to pathfinding, however they are
still approximately as slow as the slowest grid algorithm, which is
Dijkstra. Therefore in this map it is preferred to use a grid algorithm.

Among the remaining three algorithms, HPA*, JPS and A*. We see
that HPA* is the slowest, and A* is the fastest. HPA* do preprocess
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6.4 the maze map

the map before pathfinding, but not much seems to be gained from
doing so in this map. Two things work against HPA* in this map.
The first thing is that HPA* has relatively many of entrances at each
cluster border, which leads to a very large abstract graph. The second
thing is that, since the map has no dead ends, it is really a waste of
time to generate partial goals for pathfinding.

If we focus on the two fastest algorithms, A* and JPS, we see that
A* is faster than JPS. This is no surprise as the map has no big spaces,
which is what JPS excels at traversing. JPS is still relatively fast in this
map though.

Figure 49: Results from preprocessing the Checker map.

Preprocessing this map (See figure 49) shows the same trend as was
seen with pathfinding, namely that the polygonal algorithms have
a hard time. In the Lines map the preprocessing time for VG and
VGO was significantly faster than HPA*, however in this map HPA*
is significantly faster than VG and VGO.

6.4 the maze map

A maze is a classic example of a world in which pathfinding is ap-
plied. The maze are in some way a mix between the Lines map and
the Checker map. It has narrow passages as was seen in the Checker
map, and a lot of dead ends as was seen in the Lines map. Having
said that, the number of protruding corners is reduced compared to
the Checker map. Therefore, the polygonal algorithms should per-
form better than they did in the Checker map. Since there are many
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6.4 the maze map

dead ends we expect Dijkstra to do relatively well as the heuristics
are of less importance here.

We used an online maze generator to create five mazes for our ex-
periments, with side lengths 20, 40, 60, 80, 100, 120, 140, 160, 180 and
200 pixels (See figure 50). All ten mazes were created with a corridor
width of one pixel. For each map size polygonal counterparts were
created (See figure 51).

Figure 50: The biggest maze (200x200 pixels) used in our
experiments.
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6.4 the maze map

Figure 51: The smallest maze as it looks when converted into a
polygon.

Each algorithm had to find a path from each corner of the maze
to the opposite corner. We then used the average time it took to find
these paths to compare the algorithms. The results for pathfinding
can be seen in figure 52.

Figure 52: Results for pathfinding in the Maze map.

For this map we notice how BSP* is much slower than the other
algorithms. The other algorithms lie relatively close to each other.
However, as the map size grows HPA* seems to be the best. As op-
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6.5 the scaled maze map

posed to the Checker map this map have dead ends. This means,
HPA* can benefit from first finding a path in an abstract map, and
then use this to avoid the dead ends in the second pass. The other
grid algorithms are given good circumstances in this map, as the cor-
ridor width is only 1 pixel, therefore it is surprising that they are not
faster than VG or VGO. In figure 53 the results for preprocessing are
presented.

Figure 53: Results for preprocessing the Maze map.

From the results of preprocessing we can see that for a 200x200

map it takes between 1 and 2 second for HPA* to preprocess the map,
while it takes about 4 seconds for VG and VGO. The preprocessing
time is well spent, since these three algorithms also produced the
fastest pathfinding times. This means if preprocessing is allowed it
is best to use HPA* as it is the fastest for both preprocessing and
pathfinding. If the map is dynamic (i.e. if preprocessing is not al-
lowed) it is best to choose one of the grid algorithms. Here JPS seems
to be a little faster than the two other.

6.5 the scaled maze map

With this map we wanted to test what happens when we increase
the grid cell resolution in a maze, while leaving the polygonal map
unchanged. From this we wanted to learn two things. First of all
we wanted to see how the grid algorithms perform among each other
in mazes as the corridors become wider and wider. Secondly, we
wanted to see for what grid cell resolution the grid algorithms be-
come worse than the polygonal algorithms. We tested mazes with
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6.5 the scaled maze map

corridors being 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 grid cells wide (see figure 54).
The results for pathfinding can be seen in figure 55.

Figure 54: The same maze with three different corridor widths.

Figure 55: Results for pathfinding in the Scaled Maze map.

This map exemplifies the importance of having a low grid cell reso-
lution. For pathfinding the grid world algorithms become slower and
slower as the corridor width increase. The fastest grid algorithm is
HPA*, however this algorithm also preprocess the map. If we only
consider the three dynamic grid algorithms, we see that they follow
the same trend with different speeds. We can see that JPS becomes
increasingly faster as compared to Dijkstra and A*, as the corridor
width increases.

If we look at all the algorithms, we can see that the fastest algorithm
is VG and VGO. These two algorithms have the benefit of preprocess-
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6.5 the scaled maze map

ing the map first, however even for the lowest grid cell resolution,
they still perform better than the best grid algorithms.

For the lowest grid cell resolution we see BSP* being significantly
worse than all the other algorithms. If we compare BSP* to the other
dynamic algorithms, Dijkstra, A* and JPS, we must keep in mind,
that with a corridor width of one, these algorithms are given optimal
conditions. When the grid cell resolution is increased we see that
BSP* becomes faster than the other dynamic algorithms. In fact when
the corridor width is larger than 4 grid cells, the BSP* algorithm is at
least as fast as the other dynamic algorithms.

When all corridors in a maze have the same width, the map can
be represented in the grid world with an optimal grid cell resolution.
However, some maps have a varying degree of detail, which makes
it impossible to lower the grid cell resolution beyond a certain point
without sacrificing important detail (See figure 56).

Figure 56: An example of a map with a varying level of detail. Most
of the corridors are of the same width, however the grid
cell resolution cannot be lowered without sacrificing detail.

This shows that the choice of algorithm, is dependent on the opti-
mality of the grid cell resolution. The results produced by this map
shows that BSP* is the preferred dynamic algorithm if the corridor
width is greater than 4 grid cells. However, what remains to be in-
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6.6 the mazecor5 map

vestigated is whether this number stays the same, if we increase the
number of corners. We investigate this in the next map, but first we
present our results for preprocessing this map (See figure 57).

Figure 57: Results for preprocessing the Scaled Maze map.

For HPA* we notice in general a growing trend. This is no surprise
as the number of grid cells in the map increase. For corridor widths
5 and 10, we see sudden drops in the time measurements. This can
be explained by the fact that 5 and 10 nicely divides the cluster size
which is 10. A fitting cluster size may lead to a smaller amount of
inter-edges. These drops in the curve are also seen in the results for
pathfinding for HPA*. This suggests that it is of importance to pick a
cluster size that fits the map, and maybe even base the cluster size on
the average corridor width.

6.6 the mazecor5 map

In the Scaled Maze map we saw that BSP* was at least as fast as JPS
for a corridor width of 4. We also saw that if the corridor width
increased beyond 4, BSP* was consistently faster than JPS. In the
MazeCor5 map the corridors are 5 grid cells wide for all map sizes.
The grid cell resolution is therefore set to a level which should make
BSP* the fastest for the smaller maps. We want to see if this is still
the case as we increase the map size.

In the Scaled Maze map the number of corners in the polygonal
map was unchanged, while at the same time the number of grid cells
in the map increased. In the MazeCor5 map the number of grid
cells in the grid map increases, but the number of corners in the
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6.6 the mazecor5 map

polygonal map also increases. Since we only compare BSP* with JPS,
there are no data for preprocessing this map. In figure 58 the results
for pathfinding is seen.

Figure 58: Results for pathfinding in MazeCor5.

From figure 58 we can see that JPS gradually becomes faster than
BSP*. BSP* is the fastest for the smaller maps, but JPS is the faster
when the map size increase. As we increase the map size, the num-
ber of grid cells and corners increase. Both of these increase at the
same rate, namely linearly in the map size. This implies that the dif-
ference in growth rates of the running times, must come from the
algorithms themselves. This is in agreement with our theoretical ex-
pected running times.
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D I S C U S S I O N

The purpose of this research was to get an overview of the available
pathfinding algorithms. We implemented and tested seven different
algorithms using a range of map types with different properties. In
this section we discuss the results to give the reader a clear idea of
when to use which algorithm. The results of our experiments com-
bined with some theoretical observations will serve as basis for our
discussion.

Dynamic Grid Algorithms

The first three algorithms we discuss are Dijkstra, A* and JPS. It
makes sense to group these together as they all work on grid maps
and none of them rely on preprocessing. They all have the same
worst case running times, namely O(N log N), where N is the num-
ber of traversable grid cells. The results show us a rather clear trend
between the three algorithms. JPS is always at least as good as A*,
and A* is always at least as good as Dijkstra. JPS therefore seems to
be preferable over A* and Dijkstra. JPS is especially good if the map
contains large open areas with lots of traversable grid cells such as
the Lines maps. JPS usually only explores a fraction of the nodes ex-
plored by A* or Dijkstra, which means that JPS also needs to allocate
considerably less memory.

On the Maze maps we saw no real difference between the three.
This map is similar to the Lines map, in the sense that there are many
dead ends. In the Lines map A* and Dijkstra were also similar in
running time. This means, if the map contains many dead ends the
negative sides of Dijkstra becomes less significant. The Lines map
did however as mentioned contain large open areas, which made JPS
come out ahead.

Algorithms that Rely on Preprocessing

Next we discuss the algorithms which rely on preprocessing; HPA*,
VG and VGO. These were the fastest of all the pathfinding algorithms,
but did as mentioned rely on preprocessing. Reliance on preprocess-
ing is a twofold problem. The first is that the algorithms are not
applicable if the map is dynamic. The second is that the work done
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by the preprocessing has to be permanently stored, which means the
memory usage is increased. If none of this is of concern preprocess-
ing allows for very fast pathfinding as compared to the dynamic algo-
rithms. The algorithms that rely on preprocessing were for all maps
the fastest. For the Star maps and the Lines maps they were about
100 times faster than the other algorithms.

When deciding on whether to use HPA*, VG or VGO you are also
deciding on whether to use the grid representation or the polygonal
representation. If you choose to go with HPA* you are stuck with
the limitations of the grid world. These include a suboptimal path
length and the problem of choosing a fitting grid resolution. A fitting
cluster size is also of importance for HPA* as we saw in the Scaled
Maze map. When it comes to pathfinding we saw that VG and VGO
performed at least as good as HPA*, except in extreme cases such as
the Checker map. Together with the limitations of the grid world,
this could suggest that VG and VGO is preferred over HPA*.

When comparing pathfinding times of only VG and VGO the re-
sults were kind of surprising. We expected VGO to be considerably
faster than VG, but most of the time they were equally fast and in
some cases the VG algorithm was even faster. The visibility graphs
created by VGO were considerably smaller, than those created by VG.
A smaller visibility graph will always lead to an increase in speed.
However, we also used Property Two to reduce the number of succes-
sor points at runtime. We can only imagine that this extra calculation
yielded no real benefit, and instead only added to the running time.
This could explain why VGO did not perform better than VG, even
though its visibility graph is much smaller. We did not get to test this
hypothesis explicitly.

The main reason for measuring the preprocessing times, was to see
how VG, VGO and HPA* would perform in dynamic maps. As it
turned out, they were all too slow to be used on dynamic maps. A
more interesting thing to compare, would probably have been their
memory usage.

BSP*

Finally we have our own algorithm, BSP*. This algorithm is meant
for use in dynamic polygonal maps, and is therefore not reliant on
preprocessing. This means that changes can be made to the polyg-
onal world representation without slowing down pathfinding. This
flexibility however comes at the cost of pathfinding time, but if the
maps are not too large the algorithm does have acceptable running
times. The most problematic map for BSP* was the maze map. For
the biggest maze map the running time was just below 2 seconds per
pathfinding query making it approximately 100 times slower than all
the other algorithms. Therefore if you want to build a dynamic maze
game, it is probably better to make it grid based. In other map types
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BSP* is approximately as fast as the other dynamic algorithms. In
the Star map, BSP* was almost as good as JPS and A*, and in the
Lines map it was even better than the two. Therefore to decide which
algorithm to use one has to consider both map type and size.

In our research we have not come across any other optimal dy-
namic pathfinding algorithms for polygonal worlds. If you want to
stay with a polygonal world representation the only optimal alter-
natives to our knowledge are VG or VGO. If these are chosen for
dynamic maps you might have to preprocess the map once for each
pathfinding query in the worst case. This makes pathfinding very
slow. If the start and goal positions are close to each other, creating a
full visibility graph is a waste of time. In such a situation BSP* only
computes what is necessary, which is a clear advantage for dynamic
maps.
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C O N C L U S I O N

In this report we set out to investigate pathfinding algorithms. We
wanted to do this through the eyes of a video game developer. We
therefore chose two commonly used 2D world representation, namely
the 8-connected grid world and the polygonal world. In these worlds
we tested different algorithms including our own algorithm, BSP*.
We also found a simple way of reducing the visibility graph to the
absolute minimum of what is required for pathfinding.

We tested a wide variety of algorithms, which all had strengths
and weaknesses. From this we can conclude that when deciding on
a pathfinding algorithms one must first decide on what to prioritize.
If path optimality is of importance, you might want to go with a
polygonal algorithm. If the map is static, you might want to go with
an algorithm that takes advantage of preprocessing. If the map has a
compact maze structure, you might prefer a grid based algorithm. If
the map is polygonal and dynamic your best choice might be BSP*.

We set out to get an overview of current pathfinding algorithms,
which we feel was accomplished. On top of that we developed a new
algorithm, which proved to be useful for specific scenarios.
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A P P E N D I X

9.1 pseudocode for dijkstra’s algorithm

Algorithm 1 Dijkstra’s Algorithm
1: procedure Dijkstra(graph, start, goal)
2: explored← empty set
3: frontier← empty set
4: start.predecessor← null
5: start.G← 0
6: frontier.add(start)
7: repeat:
8: if frontier set is empty then return failure

9: u← node in frontier with lowest G value
10: frontier.remove(u)
11: explored.add(u)
12: if u = goal then break

13: for each successor s of u do
14: if s is in explored then continue

15: G← u.G + weight(u, s)
16: if s is not in frontier then
17: s.G← G
18: frontier.add(s)
19: s.predecessor← u
20: else if G < s.G then
21: s.G← G
22: s.predecessor← u

23: end repeat
24: path← empty list
25: n← goal
26: while n is not null do
27: path.add(n)
28: n← n.predecessor

29: path.reverse()
30: return path
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9.2 the gridtopoly algorithm

9.2 the gridtopoly algorithm

Here we describe in general terms how our so called GridToPoly al-
gorithm works. This algorithm was developed specifically for com-
paring grid algorithms with polygonal algorithms. It is able to read a
grid map and convert it into a corresponding polygonal map.

The algorithm consists of two phases. In the first phase the outer-
most polygon encompassing the entire map is found. In the second
phase we scan the inner parts of the map to find the rest of the poly-
gons.

We start by finding a point on the outer polygon. This is done
by searching the grid map for the bottom left corner. We then move
along the edge of the traversable area one grid cell at a time. If the
grid structure makes us turn right or left, we add a point to the poly-
gon. When we arrive, at the grid cell from which we started, the
outer polygon is done. During this first phase we mark all obstacle
grid cells outside the polygon.

In the next phase we search for unmarked obstacles inside the outer
polygon. This is done by scanning the grid map, and each time we
meet an unmarked obstacle grid cell, we trace the surrounding poly-
gon. This tracing is done in the same way as we did in phase one.
Each time a new polygon has been created we mark the obstacles
inside of it as visited. When all obstacles have been visited we are
done.
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