
The Need for Killer Examples for
Object-Oriented Frameworks

Michael E. Caspersen and Henrik Bærbak Christensen
Department of Computer Science, University of Aarhus

DK–8200 Aarhus N
Denmark

{mec, hbc}@daimi.au.dk

Abstract

In this paper, we argue in favor of introducing object-oriented frameworks as
an important topic in our software engineering teaching. Frameworks provide a
basis for students to build interesting and impressive programs even with small
programming effort at the introductory level. Frameworks are excellent exam-
ples of the use of design patterns and software engineering principles to serve as
case study at the advanced level. And frameworks convey the important pedagog-
ical point that developing software means reusing software just as much as pro-
ducing code. However, counting the number of publications and literature about
teaching frameworks, it seems that few has realized the potential—it is an under-
utilized technology. We therefore suggest that killer examples are highly needed
and present some experiences with two frameworks that we have found useful in
our teaching.

1 Introduction

The Call for Papers state thatObject orientation is an excellent approach to managing
the complexity of large, real-world, software systems.We agree, but add that there is
an even better approach:Let someone else do the job .

Software reuse, after decades of unfulfilled promises, is beginning to become true
in the form ofobject-oriented frameworks. Industrial developers can build large, com-
plex, software systems that are reliable and computational efficient because they do
not build from scratch: they reuse the vast effort invested into for instance the Java 2
Enterprise Edition, Java Swing, or Java Remote Method Invocation (RMI) framework.

Thus, being a successful developer today is no longer just a question of being a
good programmer, but just as much a question of understanding complex interaction
patterns in third party frameworks and being able to design in accordance with its
guidelines.

This changes the skill set that we need to teach students—or rather—we need to
teach new skills in addition to the old ones.

1



This leads us back to the opening statement:Let someone else do the job. We
strongly feel that a developer/student should tackle a new problem/assignment first
by asking: “What software can I reuse to solve this problem?” rather than “What
algorithm should I program?” or “Which design patterns should I use?”

We therefore propose that the scope of the “Killer Examples” workshop is broad-
ened to cover killer objects-first-, design patterns-,and framework examples. The rea-
son is that articles and literature that treat the topic of how to teach framework concepts,
techniques, tools, and examples are extremely slim. We take this as a strong indica-
tion that teachers have not yet seen this as an important topic to teach—it is simply
an under-utilized technologyin teaching. This is really a shame as it is a topic that
deserves our attention. Thus, we need to get the message across to teachers and one
way is to provide a base of good examples of simple, yet powerful, frameworks as
well as teaching material that focus on the conceptual foundation of object-oriented
frameworks.

2 Why Object-Oriented Frameworks?

We have above stated that reuse is important to teach. Why, then, in the form of object-
oriented frameworks? And—what benefits does teaching frameworks have for the stu-
dents, for the teacher, and for object-orientation? We have found quite a few:

1. Student motivation.A framework defines theskeleton of an application that can
be customized by an application developer[2]. This changes focus radically. If
students must program everything from scratch, then the workload and complex-
ity simply rule out making programs that in any respect compares to the fancy
and appealing programs that they are used to from e.g. the Windows platform.
Prime-numbers printed in a shell is not that spectacular. However, a framework
provided by the teachercanprovide the “bells and whistles” that makes the effort
invested by the student look more appealing or “professional”. Talking business
language, the “return on investment” is simply greater for the student.

2. Object concepts.Good object-oriented frameworks are unique examples of just
how strong a paradigm object-orientation is. Looking behind the scenes of good
frameworks shows how careful modeling of domain concepts, use of polymor-
phism, and the use of design patterns makes a piece of software highly flexible
and demonstrates the power of low coupling and high cohesion. It is simply a
brilliant case study to learn from.

3. Developing is a reuse business.As mentioned in the introduction, it is important
to teach students that “software development” is not just a question of producing
code. We must train students to stop trying to reinvent the wheel, and make them
comfortable with the idea of reusing high quality software.

Thus frameworks can serve in teaching in several areas. First, at an introductory level,
it serves as a black box that makes even a small student effort into an rather impres-
sive program. Second, the black box can be opened to show how good programs are
structured.

2



Designing frameworks is fairly hard, and this is probably part of the reason for the
under-utilization of the technology. However, more and more software components
with framework characteristics see the light of day, and it is therefore important that
students as soon as possible are exposed to the technology.

Some argue that framework technology is too advanced a technology to be incor-
porated in CS1. We do not agree. We have taught a course, “Introduction to Object-
Oriented Programming”, ten times over the last five years, and our experience tells us
the opposite: it is possible and very fruitful to teach frameworks in CS1. As a result
of our approach the students gain a clear conceptual understanding of the notion of
frameworks (design, inversion of control and hotspots) and most importantly that they
have fun working with it – primarily because it is possible with a minor programming
effort to produce appealing and impressive applications/applets.

In the next two sections, we will present our experience with teaching frameworks
in two different contexts. For our CS1 teaching, we have developed a very simple
framework,Presenter, that we present as a potential “killer example” of a simple yet
rich framework. For our CS2 teaching, we have used JHotDraw as illustration of sound
design principles and the clever use and combination of design patterns.

3 The Presenter Framework: A CS 1 Killer Example

When deciding upon covering frameworks in our CS1 course a number of requirements
was formulated: It should illustrate the basic principles of frameworks (inversion of
control and hotspots); it should be simple for students to use; it should be flexible in
the sense that a number of sensible instantiations should be possible; it should be fun,
challenging, and visual.

The (killer) example we have constructed and used is apresenter framework. The
presenter framework facilitates construction of multi-media presentations of a domain
where the compass-directions are a suitable metaphor for user navigation. (So far
“multi-media” is limited to images and text but it is possible to extend it to movies
and sound.)

We introduce the presenter framework about two thirds way into our semester long
course and do it through a specific instantiation, namely a multi-media presentation
of the tomb of Tutankhamen, the pharaoh whose tomb was miraculously found rather
intact in 1922 by Howard Carter [1].

In fig. 1 is shown a screen snapshot of the Tutankhamen tomb presentation. Using
the four buttons marked with the compass directions the user can navigate around the
chambers of the tomb. In each chamber the user is presented with a picture taken during
the original opening of the tomb along with some explanatory text. It is our experience
that the concrete instantiation—moving around a tomb with pictures from the original
opening—grabs the imagination of the students.

The Tutankhamen’s tomb instantiation also allows us to underline an important
software engineering principle, namely separating model/domain code and user in-
teraction code. We build a small object-oriented model of the domain with classes:
chamber(having exits, an image and a description) andvisitor (having an association
with a specific room and amove method). As the user interaction code is completely

3



Figure 1: The presenter framework instantiated to present Tutankhamen’s tomb.

defined by the presenter framework, it is simply impossible for the students to mix UI
and model code except through the well-defined hotspots provided by the framework.

3.1 Design

The presenter framework provides the application programmer with a simple inter-
face1:

public abstract class Presenter
{

public void showImage(String filename) { ... }
public void showText(String text) {...}

public abstract void northButtonPressed();
public abstract void eastButtonPressed();
public abstract void southButtonPressed();
public abstract void westButtonPressed();

}

Presenterprovides the backbone functionality: a large area for displaying images, a
smaller one for displaying text, and four buttons labelled with the direction buttons.
The buttons respond to user clicks and invokes the four abstract methods—these form
the hot-spots that students must override to provide tailored functionality.

1A simplified version is provided in this paper for the sake of clarity. A more detailed treatment can be
found in (will be filled in if accepted).

4



Thus, to instantiate the tomb presentation is a matter of overriding the..ButtonPressed()
methods as e.g. in:

public void northButtonPressed() {
visitor.move(NORTH);

}

where the move method of the visitor object must test an exit leading north and invoke
theshowImage andshowText methods with appropriate parameters.

Though very simple, the students must cope with two new concepts, that are fun-
damental for frameworks:inversion of controlandhot-spots.

3.2 Inversion of control

In the students’ previous programming experience from example code and exercises,
there are always a number of interacting objects and a single ‘driver’ that does the setup
and defines the main control flow. Now the control flow is dictated and controlled by
the presenter framework instead. The application code comes into play only when the
overridden...ButtonPressed() methods are called. This is a simple variant of
event-driven programming and illustrates the inversion of control principle.

3.3 Hotspots

Frameworks define core functionality, control flow and object collaboration patterns.
Application programmers refine frameworks to specific domains by adding code at
well-defined points: the hotspots (also called hooks or variability points). Hotspots
can be defined using a number of different techniques: callback methods, delegating to
objects that implement interfaces defined by the framework, subclassing, etc. We have
adopted the subclassing technique as we find it the simplest and as it also demonstrates
yet another use of polymorphism and specialization.

3.4 Discussion

Several interesting, yet simple, instantiations can be made from the Presenter frame-
work.

The first exercise is to make a virtual tour of a museum or gallery; a layout of
a number of locations in a gallery is defined and a painting is associated with each
location. The buttons can be used to move around the gallery and see the various
paintings. This exercise is deliberately similar to the tomb instantiation. In another
exercise only the “north” and “south” buttons are used to run through a list of images,
essentially making the presenter a slide-show application.

The basic directional navigation metaphor also lends itself naturally to “classic”
adventure games. We have an extension of the framework with the ability to show and
move items between the visited room and the visitor’s inventory.

After having introduced the students to Java’s graphical toolkit we have an exercise
to make a 4x4 slide-puzzle by defining a grid of buttons marked with the numbers 1–15

5



and an empty button denoting the “hole”2. The “hole” is then moved by pressing the
compass buttons so the user can try and solve the puzzle by arranging the numbers in
the right pattern in the grid.

In summary we find that though the provided functionality of the framework is
limited and simple, there are a number of intriguing exercises to be made based upon
the framework that forces the students to negotiate the basic principles of inversion of
control and refining hotspots.

4 JHotDraw: A CS2 Killer Example

We also teach a course in “Programming in the Large” with emphasis on concepts,
techniques, and tools to develop large-scale object-oriented programs. In this course,
we go into detail with design patterns and frameworks.

We have adopted JHotDraw [3] as an example of a relatively large, complex, and
very powerful framework. JHotDraw was originally developed by Thomas Eggen-
schwiler and Erich Gamma but is now part of the open source community. JHotDraw
is a framework for developing 2-D semantic drawing editors.

JHotDraw serves a number of purposes in the course:

• Backbone for compulsory project.The course includes a large programming as-
signment, that is part of the exam. For two years the domain has been designing
and programming a backgammon game. JHotDraw is used in one of the last de-
liveries where students are requested to equip their domain model of backgam-
mon with a graphical user interface using JHotDraw. Thus it here serves the
same purpose as in our introductory course: to make the result of the students’
effort look impressive.

• Design patterns in action.JHotDraw consists of more than 180 interfaces and
classes. This makes it completely incomprehensible unless some “road map” is
given. And—design patterns provide this road map. The central architecture of
the framework can be explained in terms of three patterns; and sub-architectures
yet again as combinations of patterns.

Another important point: If not careful, teaching design patterns easily becomes
just as boring and numbing as lecturing over a cook-book: “Today we will talk
about “observer”, tomorrow about “strategy”, and next week about “state”. This
easily makes the students miss the real point: that a given class in the UML class
diagrams showing a particular pattern isnot a class—it is arole that some class
must play in the resulting design. In JHotDraw the central abstractions each play
a role in three or four design patterns and the role aspect is evident.

• Understanding collaboration patterns.Adapting JHotDraw to a particular need,
like moving graphical checkers on a backgammon board, demand that the stu-
dents understand and follow the interaction patterns defined by the framework

2A general version of the Presenter framework is used that can display any Java graphical component,
not just images.

6



architecture. If not, they end up on big trouble where they “fight against” the
framework instead of letting it care about the low level interaction details. Thus
it focuses and reinforces the students’ attention to the dynamic aspects of patterns
which is the main point of the behavioral patterns.

5 Conclusion

We have in this paper argued that object-oriented frameworks is an important topic to
teach. Frameworks are examples of reusing design as well as code—whereas design
patterns is only design reuse. Thus it serves to strengthen the view on programming as
a process of reusing as well as coding; not just coding.

Frameworks have a lot of benefits that has already made a major impact on how in-
dustrial software is developed as well as the cost-efficiency and reliability of industrial
software.

We still lack to see the same impact in teaching—it is definitely an “under-utilized
technology” in our opinion. We have argued that frameworks indeed have the potential
to have a large impact in the form of more interesting, “impressing”, and thus moti-
vating exercises for the students and as a vehicle for teaching and understanding both
basic as well as advanced principles in object-oriented programming and design pat-
terns. We have presented two examples of frameworks that we have found profitable
to use in our own teaching.

We hope that our participation in the Killer Examples workshop will provide us
with feedback on our ideas as well as make framework teaching appealing to a wider
audience of teachers.

References

[1] H. Carter, A. Mace, and J. M. White.The Discovery of the Tomb of Tutankhamen.
Dover Publications, 1985.

[2] M. Fayad, D. Schmidt, and R. Johnson. Building application frameworks. In
Building Application Frameworks, chapter 1. Wiley and Sons (?), 2000 (?).

[3] Jhotdraw as open-source project. http://www.jhotdraw.org/.

7


