
Failure Rates in Introductory Programming

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

Abstract
It is a common conception that CS1 is a very difficult course and that failure rates are high. However, until
now there has only been anecdotal evidence for this claim. This article reports on a survey among institutions
around the world on failure rates in introductory programming courses. The article describes the design of the
survey and the results. The number of institutions answering the call for data was unfortunately rather low, so
it is difficult to make firm conclusions. It is our hope that this article can be the starting point for a systematic
collection of data in order to find solid proof of the actual failure and pass rates of CS1.

Keywords: CS1, failure rate, pass rate, introductory programming.

1. Introduction
It is generally accepted that it is very difficult to learn to
programming [7, 11, 14]. For example Bergin and Reilly
[2] note that It is well known in the Computer Science
Education (CSE) community that students have difficulty
with programming courses and this can result in high
drop-out and failure rates. (p. 293).

However, the belief that there generally are high drop-out
and failure rates does not seem to originate from any offi-
cial statistic or sound investigation of the subject it is
more in the realm of folk-wisdom, and claims that have
been said so often that they are accepted as truths. The
only source of information that we know of is authors who
give pass-rates for their particular introductory course in
articles describing other issues (e.g., [6]). We find it prob-
lematic not to have more solid evidence for this claim.
Consequently, we have designed a study aiming at finding
the average failure and pass rate for CS1 courses around
the world.

False views on failure and pass rates can have serious im-
plications for the quality of introductory programming
courses. A lecturer with a high failure rate might accept
that “this is just the way programming courses are since all
programming courses have high failure rates” and conse-
quently not take action to improve the course in order to
reduce the failure rate.

Programming is one of the courses that students encounter
first in their computer science university program. If these
courses have as high failure rates as claimed, or if that
rumour gets around to students, it could be one of the fac-
tors influencing the declining number of students taking a
degree in computer science [13]. We therefore believe it is
important to have more accurate numbers in order to pro-

vide potential students with a better view of the difficulties
of programming.

International organizations such as UNESCO collect data
on worldwide educational activities. Their data is, how-
ever, not fine-grained enough to give numbers for individ-
ual courses.

This article describes the design and results of our study
of failure rates in introductory programming courses (CS1
courses). The study has one major problem: only 63 insti-
tutions (12.7%) answered the call for information. This
naturally influences the generalisability of our study; we
hope that following studies will be able to provide more
general conclusions.

2. Research
This section describes the research methodology: the re-
search question, the questionnaire used to collect data, and
the participants.

2.1 The Research Question
As mentioned in the introduction, it seems like high failure
rates in introductory courses are the norm. However, no
worldwide statistics on failure rates, drop-out rates, or
pass rates for introductory programming courses at uni-
versity level exist to back up this postulate. Our research
question is therefore: What are the failure and pass rates
for introductory programming courses at university level?
And: Is the failure rate high?

2.2 The Questionnaire
In order to answer the research question, we developed a
short, web-based questionnaire [4]. In the questionnaire,
four terms were defined and the respondents asked to give
numbers for

abort: the number of students aborting the course be-
fore the final exam

skip: the number of students not showing up for the fi-
nal exam, but was allowed to

fail: the number of students who failed the course

pass: the number of students who passed the course

Apart from these numbers, we asked for the type of intro-
ductory course (imperative, object-oriented or functional
[5]), the type of institution (university, college, etc.) and
how the course was evaluated.

2.3 The Participants
The target group for this research is not an easily accessi-
ble group, so a selection of respondents is required. The
group must contain universities and colleges teaching
computer science from all over the world. To enable rep-
resentatives from all over the world, the following five
sources were chosen (respondents were addressed via
email):

• The authors of articles for Koli Calling 2004, the 4th
Annual Finnish / Baltic Sea Conference on Computer
Science Education [12];

• The authors of articles for and the participants in
panels at the 36th Technical Symposium on Com-
puter Science Education [15];

• The authors of articles for and panel members at the
10th Annual Conference on Innovation and Technol-
ogy in Computer Science Education [10];

• The authors of research papers at the 4th International
Conference on Advanced Learning Technologies [8];

• The authors of articles at the Australian Computers
in Education Conference [1].

We did not use the general SIGCSE mailing list since we
have no knowledge of the geographical distribution of the
recipients.

It is debatable whether the selected universities are repre-
sentative. Another problem is whether the persons actually
responding to the questionnaire are representative. We do
not claim that this study is representative for all universi-
ties with a computer science program, but it is useful as an
indicator of (a lower boundary of) the state of affairs.

Requests for data was send out to 575 named respondents
in November 2006. 78 of the requests for participation
were undeliverable, giving a population of 497. Overall 80
respondents (from different institutions) answered the
questionnaire, giving a response rate of 16.8%. 17 of the
answers were not filled out correctly. Consequently, we
have information from 63 institutions only (12,7%). The
geographical distribution of responses is presented in
Figure 1.

Netherlands
3%

Greece
3%

Germany
2%

Sweden
4% Australia

4%

New Zealand
2%Canada

2%
Belgium

2%

South Africa
2%Finland

2%
Spain
2%

Portugal
2%

United States of
America

66%

United Kingdom
2%Austria

2%

Figure 1: Geographical distribution of responses

From Figure 1 it can be seen that the majority of answers
originate from the US. We have no access to statistics
about the number of students in computer science for each
of the countries. The UNESCO Institute of Statistics [16]
collects data about education worldwide, but not at a suf-
ficiently detailed level. To give some indication of the
distribution of students around the world, UNESCO has
numbers for graduates in science in tertiary education (see
Figure 2). Unfortunately, UNESCO has no numbers for
China, India or other big Asian countries. From
UNESCO’s distribution of graduates, we conclude that the
answers are not as representative as we would have liked.

US
34%

Australia
4%

Eastern
Europe

12%

Western
Europe

50%

Figure 2: Percentage of graduates in science in
tertiary education according to UNESCO

3. Results
This paragraph presents the results of our survey.

3.1 Pass, fail, abort, and skip rates
The most interesting question is: “What are the pass and
failure rates? Is it really true that CS1 is a particularly
difficult course?” Figure 3 shows that 67% of the students
pass (this calculation is based on aggregate numbers, i.e. a
course with more students counts more).

0%

10%

20%

30%

40%

50%

60%

70%

80%

abort skip fail pass
Figure 3: Pass, fail, abort and skip rates; aggregate

Giving all courses equal weight, the result is not changed
much; 72 % of all students pass (see Figure 4).

0%

10%

20%

30%

40%

50%

60%

70%

80%

abort skip fail pass
Figure 4: Pass, fail, abort and skip rates; average

From these two figures (Figure 3 and Figure 4), it seems
difficult to justify the often postulated claim that introduc-
tory programming is very difficult and many students fail.
(We hypothesize that if we could see the full picture,
things would look very different, but we have no data to
support this belief.)

There is a huge variation in the pass, fail, abort and skip
rates found  from a course with only 5% of the students
passing to a course with all students passing (see Table 1
and Figure 5).

 Abort Skip Fail Pass

Mean 0,125 0,035 0,116 0,724

Median 0,108 0,000 0,077 0,706

Standard
deviation

0,108 0,098 0,112 0,192

Table 1: Mean, median and deviation of percentages
 The size of the courses also varies a lot, from 8 students
to 645. The mean course size is 116, but 23% of the
courses have less than 30 students.

It seems like the small classes (less than 30 students) do
better than the larger ones the average pass rate in the
small classes is 82% whereas large classes only have an
average pass rate of 69%.

0

2

4

6

8

10

12

14

16

18

0-1
0%

10
-20

%

20
-30

%

30
-40

%

40
-50

%

50
-60

%

60
-70

%

70
-80

%

80
-90

%

90
-10

0%

pass rate

re

sp
on

se
s

Figure 5: Pass rate versus number of responses

3.2 Universities and Colleges
Twelve colleges and fifty universities responded. It seems
that the pass rate is higher at colleges than universities; the
average pass rate for colleges is 88% whereas it is 66%
for universities. However, there are only a small number
of colleges so the result is not significant.

3.3 Types of Introductory Courses
Apart from information on pass and failure rates of the
introductory courses, we asked for the type of introductory
course (object-oriented, imperative or functional). The
distribution can be seen in Figure 6.

Object-oriented
49%

Functional
9%

Imperative
25%

Other
17%

Figure 6: Distribution of types of courses

17% report their introductory course to be “other”; almost
all of these courses were taught as a combination of im-
perative and object-oriented.

The pass rate is almost identical for the four types of CS1
courses; thus, this study cannot fuel the ongoing discus-
sion on objects-first versus imperative-first [3].

3.4 The Evaluation of CS1
As part of the questionnaire we asked about the way the
students were evaluated. We asked the participants to in-
dicate the weight that each part (final exam, mandatory
assignments, etc.) constitutes in percentage of the final
grade. There are of course big differences in grading pro-

cedures among the universities. On average, 35% of the
final grade is due to marked assignments during the
course, 35% is from the final exam, and 30% is from some
other source (e.g. lab-exercises, midterm exams, or pro-
gramming projects).

We have not been able to find any correlation between the
way a course is evaluated and the pass-rate.

4. Discussion
4.1 Is the Failure Rate of CS1 High?
The obvious counter question is: what is “high”? Is 33%
of the students failing a high number? To relate the num-
ber to similar figures, we have looked at the number of
students enrolled in tertiary computing education in 1999
and the number of students graduating in 2004 in regions
covered by UNESCO. Tertiary studies last from two to
eight years; we have decided to use numbers from the
years 1999 (enrolment) and 2004 (graduation). For some
countries, 1999 enrolment numbers or 2004 graduation
numbers were not accessible; in those cases we have used
numbers from the neighbouring years [16]. The result is
shown in Figure 7. From this figure, the number of stu-
dents graduating in 2004 was only 26.8% of the number of
students enrolled in 1999. In other words, it seems that
there is a huge number of students enrolling in tertiary
education who do not graduate and in this light, 33% may
not be an especially high percentage. (Unfortunately,
UNESCO does not have numbers for the US.)

A
ra

b
S

ta
te

s

C
en

tra
l a

nd
 E

as
te

rn
E

ur
op

e

C
en

tra
l A

si
a

La
tin

 A
m

er
ic

a
an

d
th

e
C

ar
ib

be
an

S
ou

th
 a

nd
 W

es
t A

si
a

W
es

te
rn

 E
ur

op
e

0

100000

200000

300000

400000

500000

Graduation

Enrollment

Figure 7: Enrollment and graduation in computing

4.2 The Number of Students in Computing
In 1999, approximately one million students enrolled in
computing in the 72 countries covered by Figure 7. These
72 countries do not include the US, India and China, so
we estimate that more than two million students per year
enrol in computing studies worldwide. Assuming that the

pass rate found in this survey is representative, approxi-
mately 650,000 students every year do not pass CS1. In
this light, just a small improvement of the pass rate of CS1
would cause a gigantic increase in the number of students
passing (and perhaps eventually graduating) a one per-
cent increase in the pass rate means 20,000 students extra
passing CS1.

4.3 Quality of Data
Sixty-three institutions provided data for this study. This
is a low number; according to iMahal Resources on Edu-
cation in the USA [9], 413 universities and colleges have a
program in computer science in the US alone.

A colleague from the ACM Education Council mentioned
an internal report of community colleges (two-year
schools) in the US who were in a coalition to improve
their retention rates in CS. One school reported an aver-
age failure rate, over a ten year period, of 90%! And a
university with 4000 students, where CS is the second
largest major, reported a failure rate of 72%. We have
only seen very few similar extreme numbers in our study.
One reason could be that teachers and institutions with
high failure rates are reluctant to answer this type of ques-
tionnaire simply because they are embarrassed by their
numbers.

Another source of error could be the selection of respon-
dents; teachers attending and writing about computer sci-
ence education are likely to be more concerned and proac-
tive in improving their teaching.

5. Conclusion and Future Work
Hard facts about computer science education are highly
needed in order to address the most relevant problems.
One such fact is the average failure rate or pass rate for
different types of courses.

The limitation of this study is the relative low number of
respondents. We therefore suggest that the ACM Educa-
tion Council and others engage in this work in order to
provide reliable and representative data from as many
institutions as possible.

We did not find the failure-rate of CS1 to be alarmingly
high; however, we do not claim that it is possible to make
firm general conclusions based on our study.

6. Acknowledgement
We would like to thank Henrik Bærbak Christensen, Mi-
chael Kölling, and Morten Lindholm for providing com-
ments to the questionnaire before airing it, and we would
also like to thank all the educators who took the time to
answer the questionnaire.

7. References
[1] ACEC'04. Proceedings of the Australian Computers in education 2004 conference, Adelaide, Australia July 5-8, 2004.

[2] S. Bergin and R. Reilly. The influence of motivation and comfort-level on learning to program. In Proceedings of the 17th
Annual Workshop og the Psychology of Programming Interest Group pages 293-304, University of Sussex, Brighton UK 29
June - 1 July, 2005. University of Sussex,

[3] K. B. Bruce. Controversy on how to teach CS 1: a discussion on the SIGCSE-members mailing list. SIGCSE Bulletin (As-
sociation for Computing Machinery, Special Interest Group on Computer Science Education), 37(2):111-117, 2005.

[4] M. E. Caspersen & J. Bennedsen. Questionnaire for Failure Rates for Introductory Programming Courses. (Last accessed
February 9, 2007) http://www.daimi.au.dk/~jbb/questFail.html

[5] G. Engel & E. Roberts. Computing Curricula 2001 Computer Science, Final Report. (Last accessed March 10, 2006)
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/cc2001.pdf

[6] M. Guzdial and A. Forte. Design process for a non-majors computing course. In SIGCSE '05: Proceedings of the 36th
SIGCSE technical symposium on Computer science education pages 361-365, St. Louis, Missouri, USA, 2005.

[7] B. Hanks, C. McDowell, D. Draper and M. Krnjajic. Program quality with pair programming in CS1. In ITiCSE '04: Pro-
ceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science education pages 176-180,
Leeds, United Kingdom, 2004.

[8] ICALT'04. Proceedings IEEE international conference on Advanced learning technologies. Joensuu, Finland 30 August -
1 September, 2004. IEEE Computer Society,

[9] iMahal. Find Computer Science Colleges and Universities in USA. (Last accessed February 1, 2007)
http://www.imahal.com/education/usa/cs/list.htm

[10] ITiCSE'05. Proceedings of the 10th annual conference on innovation and technology in computer science education.
Monte de Caparica, Portugal June 27-29, 2005.

[11] T. Jenkins. On the Difficulty of Learning tp Program. In Proceedings for the 3rd Annual conference of the LTSN Centre
for Information and Computer Sciences , Loughborough, UK August 27 - 29, 2002.

[12]A. Korhonen and L. Malmi. . Kolin Kolistelut - Koli Calling 2004: Procedings of the fourth Finnish/Baltic Sea Confer-
ence on Computer Science Education. Helsinki University of Technology, Department of Computer Science and Technology,
Helsinki, Finland, 2004.

[13] S. Lohr. Microsoft, Amid Dwindling Interest, Talks Up Computing as a Career. In
http://www.nytimes.com/2004/03/01/technology/01bill.html?ex=1170478800&en=14c1251e099cf4cd&ei=5070 March 1,
2004.

[14] A. Robins, J. Rountree and N. Rountree. Learning and Teaching Programming: A Review and Discussion. Journal of
Computer Science Education, 13(2):137-172, 2003.

[15] SIGCSE'05. SIGCSE '05: Proceedings of the 36th SIGCSE technical symposium on Computer science education. St.
Louis, Missouri, USA, 2005.

[16] UNESCO. UNESCO Institute of Statistics. (Last accessed January 20, 2007)
http://stats.uis.unesco.org/TableViewer/dimView.aspx?ReportId=251

