
“To Program is To Model”:
Software Development is

Stepwise Improvement of Models

Bent Bruun Kristensen, Palle Nowack, Michael Caspersen
Center for Computational Thinking

Aarhus University
Denmark

bbk@mmmi.sdu.dk, {nowack, mec}@cs.au.dk

Abstract— The paper explores the notion of “To Program is To
Model” in the realm of an introductory programming course. We
present a number of intended learning outcomes and didactical
design principles for the course, and we then describe the course
content in terms of the system to be developed as well as the
project to be undertaken. Based on this, we illustrate the many
different ways software development can be understood, as “To
Program is To Model”. These reflections utilize a conceptual
model in terms of domains and models useful when
understanding and discussing software development. Finally we
present a set of requirements for students to learn programming
as modeling.

Keywords: Teaching introductory programming, to program is
to model, software development, stepwise improvement, domains
and models in the software development process

I. INTRODUCTION
We interpret the quote “at rejse er at leve” (“to travel is to

live”) by Hans Christian Andersen [1] as the immediate
meaning of “to travel” (that is what you do) is by reflection
replaced by a more profound understanding namely “to live”
(that is what you in fact do). Consequently the meaning of “to
program is to model” is that when you program some system
you in fact model the system [2]. And when you through
stepwise improvement construct and evaluate your software
you in fact understand the meaning of “to program is to
model”.

The purpose of this paper is to explain the intention and
contents of an introductory programming course. The course
includes presentations of selected subjects and a project. All
though it is a programming course the aspects modeling and
design are also included. The intention is that the participants
modify and extend parts of an existing software system. The
actual system is a specific example but the course outline is
general. This teaching approach is motivated and evaluated.

The paper is structured as follows: In Section 2 we outline
the intended learning outcomes and corresponding knowledge
areas of the course; Section 3 briefly summarizes the didactical
design principles applied in the design of the course in order to
support the intended learning outcomes ; Sections 3 and 4
describe the system used in the course and the specific project-

based approach taken, respectively; and finally Section 6
evaluate and reflect on the overall course, and Section 7
summarize our findings.

II. INTENDED LEARNING OUTCOMES & KNOWLEDGE AREAS
The intended learning outcome of the course covers the
following knowledge areas (ranging from concrete and
explicit craftsmanship to abstract thinking and understanding):

A. Programming
The student must be able to conduct an object-oriented
software programming process:

• Read and understand programs.
• Change programs.
• Develop new elements of programs.

B. Modeling
The student must be able to explain, develop, and evaluate
Object-Oriented software system models (e.g. UML models:
use-case model, conceptual model, class diagram, sequence
diagrams, etc.) as described in [17, 18].

C. Design
The student must be able to explain and evaluate:

• Object-Oriented software designs including abstract
classes, selected and provided applications
frameworks and design patterns.

• Functional and non-functional software system
qualities.

D. Development Process
The student must be able to explain and use:

• An iterative and incremental software development
process with particular focus on stepwise
improvement.

• Software system requirements (e.g. using use-cases).

E. To program is to model
The student must be able to explain:

• To program is to model and to model is to
understand.

• To stepwise improve software and/or models is to
change understanding of a domain and/or a system.

These knowledge areas are not described further in this paper.

III. DIDACTICAL DESIGN PRINCIPLES
A number of didactical design principles have been applied as
guidelines when designing the course:
• A learning activity is not (necessarily) the same as a

knowledge area.
• Learning activities should:

o Be application-oriented.
o Facilitate and guide a consume-before-

produce progression through the materials.
o Include several substantial worked examples.
o Illustrate stepwise improvement as a general

approach to incremental development of
artefacts.

• Realism Dilemma: Professionally relevant knowledge
areas versus teachable learning activities

A. Knowledge Areas vs. Learning Activities
The learning activities form the toolbox, from which the
teacher select, combine, design, and implement his/her
particular version of the subject which should be adapted and
adjusted to the relevant context (education, level, and
individual students). A learning activity may include subject
matters from one, multiple, or all of the knowledge areas as
illustrated in Fig. 1. A learning activity is comprised by a
description for students and teachers, materials and resources,
and a process (cookbook) for using the materials in the
learning activity.

Figure 1. Content Structure Framework: Knowledge Areas (blue columns)

versus Learning Activities (yellow lines). From [3].

Example: In Section 5 we present two groups of project
activities: “Design and implementation” and “Experiments
and evaluation”. Each activity within these groups constitutes
a learning activity involving multiple knowledge areas.

B. Application-oriented (outside-in)
This means, that we start the various learning activities by
introducing well-known or familiar applications, which we
then split apart for conceptual and/or technical examination,
evaluation, and modification. For motivational reasons, we

choose applications based on the criteria, that they must by
themselves be naturally appealing to students in our age range.
Applications, which they find interesting to use and hopefully
to examine and improve.

Example: The eShop application is provided to the students
at the start of the course. eShop is presented in Section 4.
Students are expected to be familiar with this type of
application.

C. From Consumer to Producer
When designing learning activities, we aim at organising the
material in such a way that the students experience a consume-
before-produce progression through the material [4]. Initially,
the students act as consumers of an artefact by using and
studying it; then, they go on to make first simple and then
gradually more complex modifications to the artefact.
Eventually, the students may be requested to build similar
artefacts from scratch.

The consume-before-produce principle ⎯sometimes
alternatively characterised as a use-modify-create
progression⎯ can be applied in many areas. In programming,
students can use programs or program modules before they
start making modifications and eventually create modules or
complete programs on their own. The approach applies
equally well to other areas, e.g. modelling and interaction
design.

Example: As mentioned, the eShop application described in
Section 4 is provided to the students initially in the course.
They start out by using the application, then modifying it, and
then adding new elements to it. Simultaneously, the students
are provided with various UML models, which they use.
modify, and create new elements/variants of.

D. Worked Examples
A Worked Example (WE), consisting of a problem statement
and a procedure for solving the problem, is an instructional
device that provides a problem solution for a learner to study.
WEs are meant to illustrate how similar problems might be
solved, and WEs are effective instructional tools in many
programs, including computing [5]

Example: In the course, we provide the students with
multiple worked examples, e.g. the Boundary-Control-Entity
design pattern, which is also provided as a framework.

E. Stepwise Improvement
Stepwise improvement is a conceptual framework for
incremental development of an artefact [6]. According to
stepwise improvement, development takes place in three
dimensions: from abstract to concrete, from partial to
complete, and from unstructured to structured. Thus,
development of an artefact can be characterised as a mixed
sequence of refinements, extensions, and restructurings of the
artefact.

Example: During the learning activities “Design and
implementation”, students are asked to extend the system by
adding concepts (e.g. Book and Wine) and functionality (e.g.
View Basket and Checkout use cases). During “Experiments
and extensions”, the students are expected to think about (but

not design or implement) necessary and potential refinements
and restructurings.

F. The Realism Dilemma: Professionally relevant knowledge
areas versus teachable learning activities

When teaching one must always address a number of
dilemmas. One of the most important when teaching
programming and software development, is the dilemma
between, on one hand, involving realistic, professionally
relevant knowledge areas, and on the other hand, to devise
teachable learning activities suitable for the level of
competence for the involved students.

In this course, the dilemma is that the product and process
presented on the one hand must have professional qualities,
and on the other hand be illustrative at the given educational
level and with the chosen (necessarily limited) educational
focus. This requires respect for professional standards, and
explicitness about how the dilemma is tackled. For object-
oriented example programs, this tension is explored in [19,
20].

Example: Refactoring as an example of the dilemma: The
software system, eShop, presented to the student has been
iteratively refactored because the software system must be
professional — and without refactoring it would be
unrealistic. However by refactoring the naiveness and
immediate understandability of the software system
disappears. Still naiveness and easy understandability may be
expected as an essential issue in an introductory programming
and modeling experience.

IV. SYSTEM: REQUIREMENTS, DESIGN AND PROGRAM
The software system is an internet shop, eShop: The eShop
offers various products including T-shirts. A customer visits
the eShop, shops for various products, adds selected products
to a basket, and eventually checks out.

A use case diagram and a conceptual model describe the
requirements to the eShop. A class diagram and design
sequence diagrams support the corresponding design. The
program follows the design thoroughly and is illustrated by
program extracts.

A. Requirements
The eShop is described in more detail by a use case diagram
[7] in Fig. 2. The actors Customer and Administrator are not
described further. For Update Products and Shop Products the
brief use case descriptions are:

Update Products: The administrator updates products
available at the eShop.

Shop Products: A customer browses products available at
the eShop.

Shop Products

Update Products

View Basket & CheckoutCustomer

Administrator

…

…

…

…

Figure 2. Use Case Diagram

The eShop is described in more detail by an additional
conceptual model [8] (domain model in [7]) in Fig. 3. Only the
concepts Customer, Product and T-shirt are related in the
diagram: Customer has a simple (many to many) relation to
Product whereas T-shirt is a specialization of Product.
Additional potential concepts are also included.

Customer

Product

Basket

Owner

Stock

Product Description

Invoice

T-Shirt

*

*

Figure 3. Conceptual Model

B. Design
The Boundary-Control-Entity principle (B-C-E) is used to
support the software organization and includes
concepts/classes in the form of the stereotypes boundary,
control and entity. Control classes have access to boundary
and entity classes, whereas boundary classes may have access
to entity classes:
• Boundary: Boundary classes handle the interaction

between actors and control classes. Each actor–use case
pair, identifies these user interface classes with exactly
one boundary class for each pair.

• Control: Control classes handle the flow of control for a
use-case and are seen as coordinating representation
classes. They co-ordinate with entity classes that do the
work for them.

• Entity: Entity classes model the information handled by
the system, and the functionality associated with the
information.

Customer GUI

Shop GUI

Update GUI

Customer Main

Shop Products

Administrator Main

Product

Products

Boundary Control Entity

*

1

1

1

1

1

Update Products

Administrator GUI

1

1

1

1

1

T-Shirt

Figure 4. Class Diagram

An application framework [9] for the B-C-E principle with
classes Boundary, Control and Entity classes supports
the eShop system. The class diagram [7] in Fig. 4 includes
specializations (extensions) of boundary, control and entity
classes as illustrated. Neither methods nor attributes are
included in the diagram due to reasons of simplicity. The
classes handle the use cases from Figure 2 as well as main use
cases (for selecting between specific use cases) for customer
and administrator. Class Products aggregates Product
where T-Shirt is a specialization of Product.
Corresponding specific relations between the classes supply
the overall relations between boundary, control and entity.

Fig. 5 is a sequence diagram [7] of the B-C-E principle
applied to eShop: The interaction between Boundary,
Control and Entity objects is handled at the abstract class
level. Fig. 5 illustrates the combinations of these classes with
the specialized classes Shop GUI, Shop Products and
Products. The framework requires the method invocations
shown in bold in Fig. 5 to be supplied in the Shop GUI and
Shop Products classes. The go() method of the Shop
Products object is invoked. The object invokes its
setupBoundary() method from which a Shop GUI
object is instantiated. The constructor of this object invokes its
relateEntity(Control c). Next the object invokes its
setupGUI() and a reference to this Shop GUI object is
returned to the Shop Products object. The Shop
Products object then iteratively executes an interaction
with the Shop GUI object until the lifecycle of the Shop
Products object ends. The Shop Products object
invokes waitFor() on the Shop GUI object and waits.
Upon use of the GUI the method actionPerformed() is
applied to the Shop GUI object that invokes its
onActionEvent() and proceed() methods. This makes
the Shop Products object continue and invoke its
handleAction()method. If the action performed is show
the Product is retrieved from Products and presented and
the iteration continues. If the action performed is cancel the
iteration ends.

:Shop GUI

:Shop Products

gui.waitFor() *[again = false]

actionPerformed(…)

onActionEvent()

setupBoundary()

gui

relateEntity(c)

setupGUI()

proceed()

handleAction()

again

go()

result
eresult.get()=show

eresult.get()=cancel

:Products

get(…)

prd

Figure 5. Sequence Diagram: Boundary-Control-Entity

C. Program
Class diagram, sequence diagrams and the program in java
[10] describe identical artifacts. However the program
provides additional details: The abstract classes Boundary,
Control and Entity are extended with abstract methods as
follows:
 Class Boundary includes
• void relateEntity(Control c) (not an abstract

method to be overwritten only if necessary): References
to Entity objects that must be available in the
constructor for the Boundary class are achieved from
the Control object c.

• void setupGUI(): The form and contents of the GUI
for this Boundary class is constructed.

• void onActionEvent(): The action performed and
accompanying text is saved to be available for the
Control object.

Class Control includes
• setupBoundary(): The Boundary object is created

and a reference to the object is returned.
• boolean handleAction(): The reaction to user

actions through the Boundary object is handled.
Class Entity has no contents. No database or similar is
included and instead various Entity objects (i.e. various
products) are initialized when the program starts.

Boundary Control

B_C_E

Entity

Result

eShop_B_C_E

eBoundary eControl eEntity

eResult

1 1
* *

**

11
1 1

*
1

1
1 1

1

1
*

**

Thing Things
* 1

Figure 6. Frameworks B_C_E and eShop_B_C_E

Abstract classes Control and Boundary communicate
by means of the Result class. Fig. 6 shows how the
Boundary, Control, Entity and Result classes are
slightly specialized to classes eBoundary, eControl,
eEntity and eResult especially to support the eShop
system, e.g. eResult adds the specific actions to be used in
eShop. Class eEntity is specialized to Things and Thing
where Things is an aggregation of Thing.

public class Products extends Things {
…

}

abstract public class Product extends Thing {
public Product (int i) {…}
public String infoToString() {
return (id+" "+getClass().getSimpleName());

}
}

public class T_shirt extends Product {
public T_shirt(int i, String s, String c) {…}
public String infoToString() {
String ss = super.infoToString();
return(ss+" "+size+" "+color);

}
…
public SIZES size;
public COLORS color;

}
Figure 7: Entity Classes: Products, Product and T_shirt

Fig. 7 shows the classes Products and Product as

specializations of Things and Thing, respectively. Class
T_shirt extends class Product where T_shirt extends
method infoToString() and supports size and color.
Only a very simple graphical user interface is included.

V. COURSE CONTENTS AND EXPECTATIONS

A. Course
The course includes presentations of a number of subjects to
support the intended learning outcome and knowledge areas of
Section 2. The presentations of these subjects are introductory,
i.e. mainly the basic characteristics of the concepts,
techniques, descriptions, languages etc. are included.

B. Project
The project exposes the didactical design principles of Section
3 and includes two phases:
• Design and implementation
• Experiments and evaluation
The deliverables from the project are described below (no
credit is given neither for addition of database functionality
nor for improvements to the graphical user interface).

Design and implementation (addition including revision of
functionality of the existing system) include (no order is
required for the conduction and description):
• Include additional products book (with author and ISBN)

and wine (with name and vintage).
• Modify the conceptual model to include relevant concepts

in relation to these additions.
• Include additional functionality, i.e. View Basket &

Checkout, in order for the customer to use a shopping
basket and to eventually order the products in the basket.

• Make a (fully dressed) use case description for View
Basket & Checkout.

• Make the additional class diagram in relation to View
Basket & Checkout.

• Make the sequence diagram for View Basket & Checkout.
• Complete the program to support View Basket &

Checkout as well as the products book and wine. The
program must translate and execute appropriately.

Experiments and evaluation (additional revisions to and
discussions of the revised system) include:
• Describe two snapshots (including alternatives, evaluation

of these and selected solution) for each of the above parts
of View Basket & Checkout in order to illustrate the
stepwise improvement in the process.

• Describe, compare and evaluate to which extent the
addition of View Basket & Checkout comply with the
notion of design patterns in general and the existing B-C-
E application framework.

• Discuss how the Creator pattern [8] is used to support
Entity or subclasses of Entity.

• Discuss, but neither design nor implement, the
implications the additional non-functional requirement to
avoid a scenario where customers simultaneously add
products to their baskets may receive an “out of stock”
message when checking out.

• Discuss, but neither design nor implement, potential
consequences of and problems with an additional
requirement related to View Basket & Checkout to avoid a
single customer to add too many items in the basket for
too long time.

C. Project Expectations
There is no single solution to the tasks of the project.
Consequently the following observations and comments

regard problems and aspects of various solutions especially
from a modeling point of view:
• Use case View Basket & Checkout consists of two parts

namely an inspection of (and probably adjustments to) the
contents of the basket possibly followed by a conclusion
of the shopping in order to buy the items in the basket.
Alternatively after inspection of the basket the customer
may return to the shopping, i.e. browsing the items of
eShop. View Basket & Checkout is a single use case or
may be split it into two use cases View Basket and
Checkout depending on modeling, complexity and the
scheduling between the use cases.

• A Product object represents an actual item in the
eShop, i.e. n T-shirts are represented by n objects. The
product identification pid identifies the actual item not
the product type. Because the description of the product
type is identical for identical item each Product could
refer to the same product type object. Consequently the
collection of all items currently on stock is a collection of
references to these Product objects. And similarly
basket could be the collection of items currently in
Basket, i.e. a collection of references to these objects.
When an item is included in basket it is removed from
stock. Alternatively Product actually represents the
product type and pid the identification for this type.
Product may then also contain the price and the number
of items of this type on stock and in basket.

• Stock is a Products object. Basket could be a Basket
aggregated by a Products object, as well as the total
price of the Products in Products. When n items of a
Product are put into the Basket the number of items
of this Product object is reduced by n and a new
Product object is created accordingly where the number
of items is n. It is relevant to consider what happens to the
actual contents of the basket in the case where n items of
a product is added to the basket and then later m items of
the same product is added.

CustomerProduct

T-ShirtBook Wine

Products Customers

1

Thing Things
1*

1

Basket
1

1

Figure 8. Conceptual model/Class diagram: Subclasses of eEntity

Fig. 8 summarizes a design of subclasses of eEntity.
Book and Wine are modeled as specializations of Product
similar to T_Shirt. Customers and Products are
specializations of Things and Customer and Product are
specializations of Thing. Customer is aggregated by
Basket that is aggregated by Products.

VI. EVALUATION & REFLECTION

A. Evaluations
The learning outcomes and knowledge areas are necessary
restrictions to ensure the right—although limited—focus. For
example no testing—and as mentioned no GUI—are included
in the course. By intention the introduction to the eShop
system follows the steps 1) requirements, 2) design and 3)
program in order to structure in the presentation. Still the
software development process as such is not included in the
course.

The didactic design principles form a conscious choice:
The principles intend to control and support the student to
explore and experience the right problems and solutions in the
right way by using appropriate effort and time. Additional
realism dilemmas—professionally relevant knowledge areas
versus teachable learning activities—also include graphical
user interface [11], database system [12], testing [13] and
software development methodology [14]. In the eShop case
the user interface design is real dilemma: Graphical user
interface design and implementation as a topic is left out and
only premature GUIs are available with awkward windows,
buttons etc. The consequence is that the software system
appears as nonrealistic and primitive. Alternatively the course
could contain a limited but realistic introduction to GUI’s for
example concentrated around on the 8 golden rules of
interface design [11] and the project could include the design
of a few GUI’s in recognition of the high expectations of
today to user interfaces to almost any software system. The
typical effect of this alternative choice is that the GUI aspect
would more or less take possession of the project and remove
the focus from the modeling aspect. In contrast the topics
database system, testing and software development
methodology are potential, but not real dilemmas: The lack of
these aspects is tolerable because the course still can be
conducted without disturbance, dissatisfaction or lack of
realism.

The system appears to be very simple when presented
although the implementation is rather complex and profound.
Still the system is very illustrative and supportive for the
modeling experience. The solution illustrated is only one
solution, maybe not the right solution and certainly not the
only solution. The purpose of the solution included is merely
to illustrate the kind of experience that is expected for the
student.

B. Reflections
In Fig. 9 we illustrate the domains and models from an
abstract generalized model of the software development
process (adapted from [15], [16]):

Problem Domain

User Developer
System

Problem Domain Model

Software Domain Model

Development Domain ModelUsage Domain Model

Figure 9. Domains and Models

The domains are all perspectives on real or mental
phenomena, i.e. we select, envision, and/or identify certain
phenomena and classify them as belonging to one or more
domains:

• The Problem Domain contains the phenomena that
the user wants to use the system to administrate,
control, monitor or manipulate. It must reflect the
understanding of the future user of the system.

• The Usage Domain contains the phenomena that are
in involved in the user’s interaction with the system:
work processes, different ways of interacting, user
interfaces, etc. This must also reflect the
understanding of the future user of the system.

• The Software Domain contains the phenomena that
constitute the system, from a software developer’s
point-of-view. These are typically reflected in the
tools and methods applied by the developer.

• The Development Domain contains the phenomena
that constitute the working environment of the
software developer. In this sense the domain contains
the three other domains as true subsets.

When developing software, we use, modify and create models
of phenomena from the various domains in the process. Some
models are only implicit and mental, but many models are also
made explicit and manifest.

In the course the explicit models are exemplified with:
• Problem Domain Models: e.g. the conceptual model in

Fig. 3 and Fig. 8.
• Usage Domain Models: e.g. the use-case diagram in

Fig. 2. Other models include interaction design models
and user-interface mock-ups.

• Software Domain Models: a large range of design
models falls within this category, e.g. the concept/class
diagrams in Figures 4, 6, 7 and 8, and the sequence
diagram in Fig. 5.

• Development Domain Models: these models are
typically not graphically depicted, but examples
include process models, such as stepwise improvement.

The domains and models illustrate the vision during the
system development process — as such they reflect the
understanding according to the current iteration. The focus
point in the illustration is the software to be developed.

The development domain is special in the sense that it
contains the three remaining domains. Hence when
developing, we apply stepwise improvement to all of the

corresponding models: we evolve them from abstract to
concrete, from partial to complete, and from unstructured to
structured. This reflects our improved understanding of the
related domains, and (as a special case for the software
domain) the increased degree of completeness of the desired
system (in the sense: working and tested software). Thus,
development of a model can be characterised as a mixed
sequence of refinements, extensions, and restructurings of the
model. A program is simply a special case of model, and as
such programming is a special type of modelling.

In essence, Fig. 9 thus captures a snapshot of a software
development process based on stepwise improvement of the
various models.

VII. SUMMARY & CONCLUSION
In Section 1 we introduced the overall learning goal of our
proposed course: understanding that “to program is to model”.
This was then fleshed out into more specific learning goals
related to programming, modeling, design and the software
development process described in Section 2, as well as the
didactical principles described in Section 3 related to
knowledge areas, learning activities and professional
dilemmas. Section 4 described the system, which the course is
based on, and Section 5 described the actual (project-based)
course contents. In Section 6 we reflected on the relationship
between the various elements of the course, and we reflected
on the nature of the relationships between models, domains
and software development.

In summary, we conclude that when training to become a
software professional, we find it important, that students are
able to:
• Apply models and programs.
• Change models and programs, e.g.

o Make a model more concrete or more abstract.
o Extend a model or remove elements from a

model.
o Restructure/refactor a model in order to

change its non-functional qualities.
• Create new models and programs.

All of these skills are applied in the development domain, and
they all deal with the problem domain, the usage domain
and/or the software domain.

The relevant and necessary intended learning outcomes of
section 2 are exposed and worshipped by the project. The
didactical principles of section 3 are supportive and necessary
in order to be able to teach the course efficiently and
productively. The didactical design principles also express a
general approach to teaching. The actual software system fits
with the intended learning outcomes and is designed to
comply with and support the didactical design principles.
Finally the actual course contents and especially the project
organization and tasks fit to and underline the didactical
design principles. Together intended outcomes, didactical
principles, partial software system and project forms a

coherent, useful and simple basis for communicate the
conviction that programming actually is modeling.

REFERENCES
[1] H. C. Andersen. Mit Livs Eventyr. 1855.
[2] K. Nygaard. Private communication, 1990.
[3] M. E. Caspersen, P. Nowack (2013): Computational Thinking and

Practice ⎯ A Generic Approach to Computing in Danish High Schools.
Proc. of the 15th Australasian Computing Education Conference,
Adelaide, Australia, 15:137-143.

[4] H. B. Christensen, M. E. Caspersen (2002): Frameworks in CS1: a
Different Way of Introducing Event-Driven Programming. Proc. of the
Conference on Innovation and Technology in Computer Science
Education. Aarhus, Denmark, 7:75-79.

[5] M. E. Caspersen (2007): Educating Novices in the Skills of
Programming, DAIMI PhD Dissertation PD-07-04, ISSN 1602-0448
(paper), 1602-0456 (online).

[6] M. E. Caspersen, M, Kölling (2009): STREAM: A First Programming
Process, ACM Transactions on Computing Education, 9(1):4.1-4.29.

[7] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 2005.

[8] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, (3rd Edition),
Prentice Hall, 2004.

[9] M. E. Fayad, R. E. Johnson, D. C. Schmidt. Building Application
Frameworks: Object-Oriented Foundations of Framework Design.
Wiley, 1990.

[10] K. Arnold, J. Gosling. The JAVA Programming Language. Addison
Wesley, 1999.

[11] Shneiderman, B.: Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, 1992.

[12] Ullman, J.: First Course in Database Systems. Prentice-Hall, 1997.
[13] Meyer, B.: Seven Principles of Software Testing. Computer, vol. 41, no.

8, pp. 99–101, 2008.
[14] Kroll, P., Kruchten, P.: Rational Unified Process Made Easy - A

Practitioner Guide. Addison-Wesley, 2003.
[15] E. E. Jacobsen, B. B. Kristensen, P. Nowack. Architecture =

Abstractions over Software. Proceedings of International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS
PACIFIC 99), Melbourne, Australia, 1999.

[16] E. E. Jacobsen, B. B. Kristensen, P. Nowack. Models, Domains and
Abstraction in Software Development. Proceedings of International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS ASIA 98), Beijing, China, 1998.

[17] J. Bennedsen, M.E. Caspersen. Teaching Object-Oriented Programming
— Towards Teaching a Systematic Programming Process, Proceedings
of the Eighth Workshop on Pedagogies and Tools for the Teaching and
Learning of Object-Oriented Concepts, 18th European Conference on
Object-Oriented Programming (ECOOP 2004), Oslo, Norway, 2004.

[18] J.B. Bennedsen, M.E. Caspersen. Model-Driven Programming,
Reflections on the Teaching of Programming, LNCS 4821, Springer-
Verlag, 2008, pp. 116-129.

[19] J. Börstler, M.E. Caspersen, M. Nordström. Beauty and the Beast —
Toward a Measurement Framework for Example Program
Quality, Technical Report, Department of Computing Science, Umeå
University, 2007. ISSN 0348-0542.

[20] J. Börstler, H.B. Christensen, J. Bennedsen, M. Nordström, L.K. Westin,
J.E. Moström, M.E. Caspersen. Evaluating OO Example Programs for
CS1, Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2008, Madrid,
Spain, 2008, pp. 47-52.

