
Evaluating OO Example Programs for CS1

Jürgen Börstler
Dept. of Computer Science
University of Umeå, Sweden

jubo@cs.umu.se

Henrik B. Christensen
Dept. of Computer Science

University of Aarhus, Denmark
hbc@daimi.au.dk

Jens Bennedsen
IT University West
Aarhus, Denmark
jbb@it-vest.dk

Marie Nordström
Dept. of Computer Science
University of Umeå, Sweden

marie@cs.umu.se

Lena Kallin Westin
Dept. of Computer Science
University of Umeå, Sweden

kallin@cs.umu.se

Jan Erik Moström
Dept. of Computer Science
University of Umeå, Sweden

jem@cs.umu.se
Michael E. Caspersen
Dept. of Computer Science

University of Aarhus, Denmark
mec@daimi.au.dk

ABSTRACT
A significant part of learning to program is to be exposed to
examples that may work as templates, guidelines and inspi-
ration for the students’ own programs. It is therefore impor-
tant that textbooks provide high quality examples. In this
paper, we discuss properties of example programs that might
affect the teaching and learning of object-oriented program-
ming. Furthermore, we present an evaluation instrument
for example programs and report on initial experiences of
its application to a selection of examples from popular in-
troductory programming textbooks.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Informa-
tion Science Education—computer science education

General Terms
Experimentation, Human Factors, Measurement

Keywords
CS1, example programs, object-orientation, quality

1. INTRODUCTION
Examples are important tools for teaching and learning.

Both students and teachers cite example programs as the
most helpful materials for learning to program [9]. Research
in cognitive science confirms that “examples appear to play
a central role in the early phases of cognitive skill acquisi-
tion” [18]. Moreover, research in cognitive load theory has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’08 ’08 Madrid, Spain
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

shown that worked examples play an important role in order
to increase learning outcome [5]. With carefully developed
examples, we can better avoid misconceptions [4, 7].

There are two major quality aspects of examples: tech-
nical quality and didactical (i.e., pedagogical) quality. Ex-
amples work as role models; novices use examples as tem-
plates for solving new problems [15]. Exemplification is a
well researched topic in mathematics education [10] where
“the choice of examples that learners are exposed to plays a
crucial role in developing their ability to generalize”[21]. Ex-
amples must therefore be consistent with all learning goals;
follow the principles, guidelines, and rules we want to instill
in our students; adhere to the course design and the ex-
pected level of the student. Otherwise, students will have a
difficult time recognizing patterns and telling an example’s
non-essential properties (noise) from those that are struc-
turally or conceptually important. It is therefore important
to present examples in a way that conveys their “message”,
but at the same time be aware of what learners might actu-
ally see in an example [12].

In this paper, we discuss essential properties of example
programs and formulate criteria which are used to develop
an evaluation instrument. We then present the results of us-
ing this instrument on a selection of program examples from
popular textbooks. Finally, we discuss the lessons learned
from performing this evaluation and outline how our work
can be taken further.

2. RELATED WORK
Although examples are perceived as one of the most im-

portant tools for the teaching and learning of programming,
there is very little research in this area. Most often ex-
ample issues are only discussed in the narrow context of a
single simple and concrete example, like the recurring “Hello
World”-type discussions [6, 19], or they are regarded as a lan-
guage issue [2, 14]. Only few authors have taken a broader
view by investigating features of example programs and their
(potential) effects on learning.

Wu et al. [20] studied programming examples in 16 high
school computer textbooks and concluded that most of them
“lacked detailed explanation of some of the problem-solving

steps, especially problem analysis and testing/debugging”.
Almost half of the examples fell into either the math-problem
(27%) or syntax-problem (21%) category.

Holland et al. [8] provide guidelines for designing example
programs to prevent object-oriented misconceptions, which
are successfully used by Sanders and Thomas [16] for assess-
ing student programs.

Malan and Halland [11] describe four common pitfalls
that should be avoided when developing example programs.
They argue that examples that are too abstract or too con-
crete, that do not apply the taught concepts consistently,
or that undermine the concept they are introducing, might
hinder learning.

Furthermore, there are many studies of software develop-
ment in general showing that adherence to common software
design principles, guidelines, and rules [3], as well as certain
coding, commenting, naming guidelines, and rules [13, 17]
support program understanding.

There is also a large body of research on worked examples
providing general guidelines regarding the form and presen-
tation of examples [5].

However, to our knowledge, neither of the above princi-
ples, guidelines, and rules have been used to evaluate exam-
ple programs from programming textbooks.

3. RESEARCH APPROACH
This project is carried out by two research groups from

two different countries.
During an initial two-day workshop, a large number of ex-

ample programs from different textbooks were discussed to
identify common strengths and weaknesses. The goal was
to define a set of criteria to effectively discriminate between
different levels of “quality”, based on accepted principles,
guidelines, and rules from the literature (see Section 2) and
our own teaching experience. The outcome of this workshop
was an initial evaluation instrument and a test set of text-
book examples. In the context of this work an example is
considered as a complete application or applet plus all sup-
porting explanations related to this particular program (in
contrast to code fragments). The instrument was tested on
two examples by four reviewers, which lead to several re-
visions of the instrument. After testing further examples,
the instrument was finally refined to the one described in
Section 4.

The instrument was then used by six reviewers (two fe-
male, four male; age 37–48) to evaluate five example pro-
grams. All reviewers are experienced computer science lec-
turers in object-oriented programming, most of them at the
introductory level. The results of the evaluation are pre-
sented in Section 5.

To evaluate the instrument, we decided to focus on early
examples. We chose examples of different levels of quality
and complexity covering the following aspects; the very first
example of a textbook, the first exemplification of devel-
oping/writing a (user-defined) class, the first application in-
volving at least two interacting classes and a non-trivial (but
still simple) example of using inheritance. Table 1 summa-
rizes the features of our five examples E1–E5.

4. EVALUATION INSTRUMENT
Inspiration for the evaluation instrument was drawn from

the checklist-based evaluation by the Benchmarks for Sci-

Table 1: Categorization of example programs.
First First user- Several

example defined class classes Inheritance
E1 — — X —
E2 X — — partly
E3 — X — —
E4 — X partly —
E5 — — X X

ence Literacy project [1] by defining a set of specific, well-
defined criteria that can be evaluated on a uniform scale.
All criteria should be based on accepted programming prin-
ciples, guidelines, and rules; educational research; and the
groups’ collective teaching experience. The resulting set of
11 criteria was grouped into three independent aspects of
quality; technical quality (three items), object-oriented qual-
ity (two items) and didactic quality (six items).

Technical quality (T1–T3). The criteria in this category
focus on technical aspects of example programs that are in-
dependent of the programming paradigm. Examples should
be syntactically and semantically correct, written in a con-
sistent style and follow accepted programming principles,
guidelines, and rules (see Table 2).

Table 2: Checklist items for technical quality.
T1 Problem versus implementation. The code is appropri-

ate for the purpose/problem (note that the solution need
not be OO, if the purpose/problem does not suggest it).

T2 Content. The code is bug-free and follows general coding
guidelines and rules. All semantic information is explicit.
E.g., if preconditions and/or invariants are used, they must
be stated explicitly; dependencies to other classes must be
stated explicitly; objects are constructed in valid states; the
code is flexible and without duplication.

T3 Style. The code is easy to read and written in a consistent
style. E.g., well-defined intuitive identifiers; useful (strate-
gic) comments only; consistent naming and indentation.

Object-oriented quality (O1–O2). The criteria in this
category address technical aspects that are specific for the
object-oriented paradigm, i.e., how far an example can be
considered a role model of an object-oriented program. In
contrast to technical quality, the principles, guidelines and
rules covered here are specific for the object-oriented paradigm
(see Table 3).

Table 3: Checklist items for object-oriented quality.
O1 Modeling. The example emphasizes OO modeling.

E.g., emphasizes the notion of OO programs as collec-
tions of communicating objects (i.e., objects sending mes-
sages to each other); models suitable units of abstrac-
tion/decomposition with well-defined responsibilities on all
levels (package, class, method).

O2 Style. The code adheres to accepted OO design principles.
E.g., applies proper encapsulation and information hiding;
adheres to the Law of Demeter (no inappropriate intimacy);
avoids subclassing for parameterization; etc.

Didactical quality (D1–D6). The criteria in this cate-
gory deal with instructional design, i.e., comprehensibility
and alignment with general learning goals for introductory
(object-oriented) programming (see Table 4).

To summarize, one could say that T1–T3 and O1–O2 as-
sess the actual code of an example program and D1–D6
assess how it is presented to the learner. The categories
complement each other; an example of high technical and
object-oriented quality will not be very effective, if it can-
not be understood by the average learner. However, such an

Table 4: Checklist items for didactic quality.
D1 Sense of purpose. Students can relate to the example’s

domain and computer programming seems a relevant ap-
proach to solve the problem. In contrast to, e.g., flat wash-
ers which are only relevant to engineers, if the concept or
word is at all known to students outside the domain (or
English-speaking countries).

D2 Process. An appropriate programming process is fol-
lowed/described. I.e., the problem is stated explicitly, an-
alyzed, a solution is designed, implemented and tested.

D3 Breadth. The example is focused on a small coherent set
of new concepts/issues/topics. It is not overloaded with
new “stuff” or things introduced “by the way”. Students’
attention must not be distracted by irrelevant details or
auxiliary concepts/ideas; they must be able to get the point
of the example and not miss “the forest for the trees”. In
contrast to, e.g., explaining JavaDoc in detail when the
actual topic is introducing classes.

D4 Detail. The example is at a suitable level of abstraction for
a student at the expected level and likely understandable
by such a student (avoid irrelevant detail). In contrast to,
e.g., when an example sets out to describe the concept of
state of objects, but winds up detailing memory layout in
the JVM).

D5 Visuals. The explanation is clear and supported by mean-
ingful visuals. E.g., uses visuals to explain the differences
between variables of primitive (built-in) types and object
types. In contrast to, e.g., showing a generic UML diagram
as an after-thought without relating to the actual example.

D6 Prevent misconceptions. The example illustrates (rein-
forces) fundamental OO concepts/issues. Precautions are
taken to prevent students from overgeneralizing or drawing
inappropriate conclusions. E.g., multiple instances of at
least one class (to highlight the difference between classes
and objects); not just “dumb” data-objects (with only set-
ters and getters); show both primitive attributes and class-
based attributes; methods with non-trivial behavior; dy-
namic object creation; etc.

example might still be a very valuable teaching resource, in
case the educator using it finds better ways to explain it.

All ratings in the resulting checklist are on a Likert-type
scale from 1 (strongly disagree) to 5 (strongly agree). Since
all checklist items are formulated in the same (positive) way,
5 is always best. An example of a filled-in checklist can
be found at http://www.cs.umu.se/research/education/

checklist_iticse08.pdf.

5. RESULTS
The results presented here are based on the evaluation

that was made in order to answer two questions:
• Can the instrument distinguish between “good” and

“bad” examples?
• Do reviewers interpret the items of the instrument in

the same way?
Figure 1 summarizes the results of this evaluation of five

examples, E1–E5 (see also Table 1). As can be seen, only
one example (E1) is consistently rated very high across all
three quality categories. Low average ratings have almost al-
ways a relatively high standard deviation (i.e., disagreement
between reviewers).

Besides the overall high rating of E1, there are several
other noteworthy observations. The overall technical qual-
ity of the reviewed example programs is very high, except
for E5 which did not correctly implement its stated require-
ments. The section on object-oriented quality has the largest
variation. It should, however, be noted that E2 is a “Hello
World”-type example which cannot be expected to achieve
high ratings in this category. Given that we used examples
from quite popular textbooks, the overall ratings for didactic

Didactic quality (D1-D6)

1

2

3

4

5

E1 E2 E3 E4 E5
A

ve
ra

ge
 g

ra
de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

Object-oriented quality (O1-O2)

1

2

3

4

5

E1 E2 E3 E4 E5

A
ve

ra
ge

 g
ra

de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

Technical quality (T1-T3)

1

2

3

4

5

E1 E2 E3 E4 E5

A
ve

ra
ge

 g
ra

de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

Figure 1: Average grade (bars) and standard de-
viation (line) for evaluation of five examples. Re-
sults are shown by item category (technical, object-
oriented, and didactic quality).

quality and the ratings of E3–E5 on object-oriented quality
were surprisingly low.

Figure 2 shows the overall distribution of ratings for each
of the six reviewers, R1–R6. It can be noted that the re-
viewers utilize the rating scale differently. Reviewer R5, for
example, used the best grade (5) only half as much as the
average (21.8% compared to 43% for all reviewers together).
Reviewer R6, on the other hand, did not use a single 1. How-
ever, except for reviewer R5, the distributions of ratings are
quite similar (in total the usage of rating 1 was only 7.3%).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R1

R2

R3

R4

R5

R6

Tot

Fives Fours Threes Twos Ones

Figure 2: Distribution of ratings between reviewers.

It seems that teaching experience somewhat influences the
grading. One reviewer, R5, has exclusively taught advanced
programming courses for the last couple of years, and grades
given by R5 tend to be slightly lower on average.

To summarize, it is evident that the instrument distin-
guishes between examples. Furthermore, the example with
the overall highest ratings, E1, is also considered to be a
“good” example by the authors. However, when looking at
Figure 2, it is evident that there are differences in ratings
among the reviewers. These differences will be discussed
further in later sections.

6. DISCUSSION
The purpose of the presented instrument has been to re-

place the intuitive “I know it, when I see it”-knowledge with
a more objective measurement. So what conclusions can we
make from the results? What about the choice of items?
How well does the instrument reflect the experienced teach-
ers opinion of the example?

6.1 Quality categories
Overall, we find that the scoring does rank the examples

as we would have done based on an informal discussions
and ranking. Furthermore, the reviewers find the three cat-
egories natural and covering the critical issues of examples.

Technical quality (T1–T3). Assuming that textbook au-
thors have developed and tested their examples carefully,
one would in general expect the technical grades to be very
high. This is also shown in the ratings. The only exception
is E5, that contains a defect and the resulting program does
not fulfill the requirements. This is well captured by the
items.

Object-oriented quality (O1–O2). In general, the object-
oriented characteristics of examples seems to be captured by
this quality. E1 received the highest rating by the instru-
ment and was agreed upon to be the best example in this
respect when discussed in the group. E2 is the first example
given in that textbook and is not really focused on object-
oriented techniques which is reflected by its low OO-quality
score.

Didactic quality (D1–D6). When comparing the results
in this category, one example is rated high. The others at
approximately the same level, although with different, and
in most cases high, standard deviations. When investigat-
ing the ratings of the individual items, we noticed that the
disagreement among the reviewers were high in many of the
items in all examples. It seems that the group of reviewers
do not share a common understanding of the meaning of the
items and how they should be rated.

6.2 Items
Not doing the initial study, (see Section 3), thorough enough,

we underestimated the semantical issues concerning the items.
It was implicitly assumed that all reviewers had the same
interpretation of each single item. During the evaluation de-
scribed in Section 5 it became evident that the rating still
was difficult in some cases.

O1 vs. O2 Examples not considered to be object-oriented
caused discussion on how to rate O2 in relation to O1. Since
O2 was meant to be independent of O1, some reviewers gave
high O2-grades despite a low rating of O1. The intention is

that lack of object-orientedness should result in low ratings.
Therefore, it is necessary to agree on (and describe) the
intended use of O1 and O2.

Maybe O1 and O2 could be replaced by a conditional as-
sessment with O1 as the overall rating for OO or not and
O2 as a more detailed assessment of the OO-characteristics.
If an example is considered to be non-OO (e.g., in “Hello
World”-type examples), O2 is not rated.

D3 vs. D4 It is often difficult to decide where to put the
critique on breadth vs. detail of an example (and/or its
explanation). It is clear that D3 and D4 are related, and it
might be cases where an example has been penalized twice.

D5 There was confusion on how to rate a complete lack of
visuals compared to “bad” visuals. This discussion can be
extended to other items as well, e.g., O1, O2, and D2. It is
has been problematic for some reviewers not to be able to
separate “violating” from “not addressing”.

D6 When investigating the items once more, we started
to believe that the item D6 maybe should be regarded as
“object-oriented quality”rather than“didactic quality”. Mak-
ing this change resulted, however, only in minor changes of
the results as compared to Figure 1.

Granularity and impact Other aspects concerning the
items are the granularity and the impact of each item in
a compound rating. If a total score were to be used, the
weight of individual items must be decided. It is clearly
not as important that an example is supported by visuals
(D5) as that it is prevents misconceptions (D6). Moreover,
the number of items in each category will in fact lead to a
implicit weighing of categories.

6.3 Documentation
Written documentation is important in all communities

to establish a common ground. Using documentation will
ensure that independent reviewers build their evaluations
on the same definitions and have a common understanding
of the implications of the rating scale. Furthermore, doc-
umentation of the reviews including not only the rating in
numbers but also the comments from the reviewer makes it
possible to investigate “out-liers” further.

Some examples One topic of discussion was when to rate
an item for an example as 1 and when to rate it as 5, i.e., to
get a common understanding of the extremes for each item.
During these discussions, examples were often used to illus-
trate these extremes. If this instrument is to be used in a
community, we strongly recommend that a written instruc-
tion, containing such examples, should be supplied with the
instrument. In the rest of this section, we will present some
examples that were used in our work. As a future work, a
written instruction will be developed.

A class with four primitive attributes where the construc-
tor initializes only two of them will give a low T2 rating since
the attributes are dealt with in two different ways. Another
example is the same code fragment appearing several times
without being refactored into a method.

O1 is rated low, e.g., in the following cases: classes with
too many and/or unrelated responsibilities; procedural pro-
grams that are just casted into classes; over-use of class
methods or attributes; or examples not showing multiple
instances of a class when possible.

An example should get low ratings in D1 if its domain is

too complex or“off topic”to be understandable or interesting
for the average computer science student. This will happen
even if the example has high ratings in technical quality and
object-oriented quality.

When a large amount of new concepts and issues are in-
troduced, D3 will get low ratings. One example is when
the introduction of user-defined classes is interleaved with
explanations of the syntax and purpose of JavaDoc.

If an example class only contains ‘set’- and ‘get’-methods
but no meaningful behavior, students may equate classes
with plain records and this should result in low D6 ratings.
Another example is if all classes are instantiated only once;
then the distinction between object and class easily becomes
blurred.

7. SUMMARY AND CONCLUSIONS
In this paper, we have described the design and test of

a suggested instrument for evaluating introductory exam-
ples. The purpose of the instrument is first and foremost
to be used for evaluating object-oriented examples for ed-
ucational purposes. Preferably it should be possible to use
the instrument both to compare individual examples and to
evaluate a larger set of examples, e.g., textbooks.

The result of the test shows that the instrument is work-
ing as predicted. An individual can use the instrument to
make comparisons among examples. However, the instru-
ment must be refined before being used by a community
of reviewers. The differences among ratings of some of the
items are too large to make the results reliable, since we
believe that part of it is due to the interpretation of the
items.

The refinement has already been initiated and consists of
rewriting the items as well as complementing the instrument
with instructions and examples of how to perform the eval-
uation, as indicated in Section 6.

8. REFERENCES
[1] AAAS. Benchmarks for science literacy, a tool for

curriculum reform, 1989. http://www.project2061.
org/publications/bsl/default.htm, last visited
2007-12-07.

[2] L. Böszörményi. Why Java is not my favorite
first-course language. Software-Concepts & Tools,
19(3):141–145, 1998.

[3] L. Briand, C. Bunse, and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE
Transactions on Software Engineering, 27(6):513–530,
2001.

[4] M. Clancey. Misconceptions and attitudes that infere
with learning to program. In S. Fincher and M. Petre,
editors, Computer Science Education Research, pages
85–100. Taylor & Francis, Lisse, The Netherlands,
2004.

[5] R. Clark, F. Nguyen, and J. Sweller. Efficiency in
Learning, Evidence-Based Guidelines to Manage
Cognitive Load. Wiley & Sons, San Francisco, CA,
USA, 2006.

[6] M. H. Dodani. Hello World! goodbye skills! Journal of
Object Technology, 2(1):23–28, 2003.

[7] M. Guzdial. Centralized mindset: A student problem
with object-oriented programming. In Proceedings of

the 26th Technical Symposium on Computer Science
Education, pages 182–185, 1995.

[8] S. Holland, R. Griffiths, and M. Woodman. Avoiding
object misconceptions. In Proceedings of the 28th
Technical Symposium on Computer Science Education,
pages 131–134, 1997.

[9] E. Lahtinen, K. Ala-Mutka, and H. Järvinen. A study
of the difficulties of novice programmers. In
Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science
Education, pages 14–18, 2005.

[10] Liz, Bills, T. Dreyfus, J. Mason, P. Tsamir,
A. Watson, and O. Zaslavsky. Exemplification in
mathematics education. In Proceedings of the 30th
Conference of the International Group for the
Psychology of Mathematics Education, Vol. 1, pages
126–154, 2006.

[11] K. Malan and K. Halland. Examples that can do harm
in learning programming. In Companion to the 19th
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 83–87,
2004.

[12] J. Mason and D. Pimm. Generic Examples: Seeing the
General in the Particular. Educational Studies in
Mathematics, 15(3):277–289, 1984.

[13] P. Oman and C. Cook. Typographic style is more than
cosmetic. Communications of the ACM,
33(5):506–520, 1990.

[14] N. Ourosoff. Primitive types in Java considered
harmful. Communications of the ACM, 45(8):105–106,
2002.

[15] P. Reimann and T. J. Schult. Turning examples into
cases: Acquiring knowledge structures for analogical
problem solving. Educational Psychologist,
31(2):123–132, 1996.

[16] K. Sanders and L. Thomas. Checklists for grading
object-oriented cs1 programs: Concepts and
misconceptions. In Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in
computer science education, pages 166–170, 2007.

[17] A. Takang, P. Grubb, and R. Macredie. The effects of
comments and identifier names on program
comprehensibility: an experimental investigation.
Journal of Programming Languages, 4(143):167, 1996.

[18] K. VanLehn. Cognitive skill acquisition. Annual
Review of Psychology, 47:513–539, 1996.

[19] R. Westfall. ‘Hello, World’ considered harmful.
Communications of the ACM, 44(10):129–130, 2001.

[20] C.-C. Wu, J. M.-C. Lin, and K.-Y. Lin. A content
analysis of programming examples in high school
computer textbooks in taiwan. Journal of Computers
in Mathematics and Science Teaching, 18(3):225–244,
1999.

[21] R. Zazkis, P. Liljedahl, and E. J. Chernoff. The role of
examples in forming and refuting generalizations.
ZDM Mathematics Education, 40:131–141, 2008.

