
Mental Models and Programming Aptitude
Michael E. Caspersen

Department of Computer Science
University of Aarhus

Aabogade 34
DK-8200 Aarhus N, Denmark

mec@daimi.au.dk

Jens Bennedsen
IT-University West

Aarhus
Fuglsangs Allé 20

DK-8210 Aarhus V, Denmark

jbb@it-vest.dk

Kasper Dalgaard Larsen
Department of Computer Science

University of Aarhus
Aabogade 34

DK-8200 Aarhus N, Denmark

larsen@daimi.au.dk

ABSTRACT
Predicting the success of students participating in introductory
programming courses has been an active research area for more
than 25 years. Until recently, no variables or tests have had any
significant predictive power. However, Dehnadi and Bornat claim
to have found a simple test for programming aptitude to cleanly
separate programming sheep from non-programming goats. We
briefly present their theory and test instrument.

We have repeated their test in our local context in order to verify
and perhaps generalise their findings, but we could not show that
the test predicts students’ success in our introductory program-
ming course.

Based on this failure of the test instrument, we discuss various
explanations for our differing results and suggest a research
method from which it may be possible to generalise local results
in this area. Furthermore, we discuss and criticize Dehnadi and
Bornat’s programming aptitude test and devise alternative test
instruments.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education.

General Terms
Experimentation, Human Factors.

Keywords
Objects-first, CS1, introductory programming, object-oriented
programming, predictors of success.

1. INTRODUCTION
In a teaser email circulated in late 2005, shortly before the PPIG
workshop in January 2006, Richard Bornat wrote: “We have a
scientific breakthrough that we’d like to announce at your little
PPIG. The breakthrough is that Saeed has a test which picks out,
with 100% accuracy, those people who have a chance of learning
to program and rejects, with 100% accuracy, those who have no

chance. Don’t believe it? Neither did I, at first, but it’s true. And
I’m not telling you, before the little PPIG, just how it’s done. But
of course I will tell you all there.”

We learned about the test in conjunction with the PPIG workshop
in January 2006. Having searched for predictors of success for
introductory programming courses, we were certainly intrigued
by the promotion material, and we decided to try to verify
Dehnadi and Bornat’s findings.

This paper describes what we found. As has already been noted in
the abstract, we have not been able to verify Dehnadi and Bor-
nat’s findings.

In the next section, we provide a brief overview of some of the
research which aims at finding predictors of success for computer
science studies at universities. In section 3, we describe the pro-
gramming aptitude test developed at Middlesex University by
Dehnadi and Bornat and their preliminary results. In sections 4
and 5, we present our research method and our findings, which we
discuss in section 6. Section 7 provides a succinct conclusion.

2. RELATED WORK
There has been a substantial amount of research conducted to
identify general variables that are predictors of the success of stu-
dents aiming for a degree in computer science. Investigated vari-
ables encompass gender [21, 22], ACT/SAT scores [9], students’
mathematical abilities [6, 19, 22], performance in prior courses
[12], emotional factors [11], abstraction ability [3], and students’
own beliefs [24]. Research has also been conducted in the more
specific area of introductory programming [2, 5, 8, 10, 17, 18,
20].
Evans and Simkin [15] sum up the arguments given in many stud-
ies for performing this kind of study:

1. Discriminating among enrolment applicants
2. Advising students on majors
3. Identifying productive programmers
4. Identifying employees who might best profit from addi-

tional training
5. Improving computer classes for non-CIS majors
6. Determining the importance of oft-cited predictors of

computer competency such as gender or math ability
7. Exploring the relationship between programming abili-

ties and other cognitive reasoning processes

Dehnadi and Bornat [1, 13, 14] claim they have found a way to
identify students who will not succeed in learning programming.
Based on a test of 60 students, they claim “[w]e have found a test
for programming aptitude, of which we give details. Remarkably,
we can predict success or failure even before students have had

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ITiCSE 2007, June 25–27, 2007, Dundee, Scotland.
Copyright 2007 ACM X-XXXXX-XX-X/XX/X.

any contact with any programming language, and with total accu-
racy.” [14].
Our rationale for conducting this study is primarily to verify the
claims made by Dehnadi and Bornat and to build up knowledge
about factors that influence students’ learning of programming.

3. TEST FOR PROGRAMMING APTI-
TUDE
In this section, we describe the programming aptitude test devel-
oped at Middlesex University by Dehnadi and Bornat and their
preliminary results as reported in [14].
Dehnadi and Bornat classified students according to their consis-
tency in answering a set of similar questions. The overall hy-
pothesis is that consistent students and consistent students only
will be able to learn to program.
To determine consistency, Dehnadi and Bornat used a question-
naire with 12 small Java programs. Each program consists of two
variable declarations and one, two, or three assignment state-
ments; Figure 1 shows a sample.

5. Read the follow-
ing statements and
tick the box next to
the correct answer in
the next column.

int a = 10;

int b = 20;

b = a;

a = b;

The new values of a and b are:
� a = 30 b = 50

� a = 10 b = 10

� a = 20 b = 20

� a = 10 b = 0

� a = 0 b = 20

� a = 30 b = 0

� a = 40 b = 30

� a = 0 b = 30

� a = 20 b = 10

� a = 30 b = 30

� a = 10 b = 20

Any other values for a and b:
 a = b =

 a = b =

 a = b =

Figure 1: A sample question from Dehnadi and Bornat’s ques-
tionnaire

Dehnadi and Bornat have identified 11 different mental models
which are captured by options in the questionnaire (along with the
last option: other). The questionnaire contains 12 questions simi-
lar to the one in Figure 1, giving rise to a 12-tuple describing the
mental models applied by a student (e.g. (m7, m3, ..., m7)) where
mi represents a mental model. The 12-tuple is used to assign each
student to one of three categories:

• The consistent group. The students who use the same mental
model for most of the questions (irregardless of which model).

• The inconsistent group. The students who use varying mental
models for the questions.

• The blank group. The students who refuse to answer the ques-
tions.

In [13], the authors write: “The consistent/inconsistent/blank as-
signment which is the basis of our preliminary result was rather
subjective”. In [13], the authors develop a more objective instru-
ment for categorisation of the students⎯an instrument which we
shall use in our investigation.
Dehnadi and Bornat found that 44% of their students belong to
the consistent group, and 39% belong to the inconsistent group;
8% left the questionnaire blank (the remaining 9% are missing).
In [14], the authors conclude that the test, although not perfect, is
the first test to be able to claim any degree of success:

“[Our analysis] shows that the first administration of
Dehnadi’s test reliably separated the consistent group, who
almost all scored 50 or above, from the rest, who almost all
scored below 50, with only 4 out of 27 false positives in the
consistent group and 9 out of 34 false negatives in the rest
[...]. Clearly, Dehnadi’s test is not a perfect divider of pro-
gramming sheep from non-programming goats. Nevertheless,
if it [was] used as an admissions barrier, and only those who
scored consistently were admitted, the pass/fail statistics
would be transformed. In the total population 32 out of 61
(52%) failed; in the first-test consistent group only 6 out of 27
(22%). We believe that we can claim that we have a predictive
test which can be taken prior to the course to determine, with
a very high degree of accuracy, which students will be suc-
cessful. This is, so far as we are aware, the first test to be able
to claim any degree of predictive success.”

It is indeed very interesting if Dehnadi and Bornat have found a
predictive test as they describe.

4. RESEARCH METHOD
In this section, we discuss the methodology used in our study.

4.1 Hypothesis
In this study, we examined the predictive power of a student’s
mental model for his or her success in learning introductory pro-
gramming; the hypothesis is that there is a positive correlation
between a student’s mental model and the student’s ability to
learn programming. The specific research question we investi-
gated is the following:

Is there a correlation between the students’ consistency in the
mental model applied in questionnaire and their performance
in the final exam of a seven-week introductory, model-based,
object-oriented programming course?

4.2 The Course
The programming course spans the first half of CS1 at the Uni-
versity of Aarhus. The course runs for seven weeks; two weeks
after the course ends, there is a lab examination with binary
pass/fail grading. The grading is based solely upon the final ex-
amination; acceptable performance during the course is a prereq-
uisite for the final exam but does not count as part of the grading.

Aims: The purpose of the course is for students learn the founda-
tion for systematic construction of simple programs and, through
this, obtain knowledge about the role of conceptual modeling in
object-oriented programming. The goal is that students become
familiar with a modern programming language, fundamental pro-
gramming language concepts, and selected class libraries.

Competencies: After the course, students should be able to ex-
plain and use fundamental elements in a modern programming
language, use conceptual modelling in relation to preparing sim-
ple object-oriented programs, implement simple object-oriented
models in a programming language, and use selected class librar-
ies.

Form: The course runs for seven weeks; every week, there are
four lecture hours and four lab hours with a TA. In addition to the
scheduled hours, students are supposed to work approximately
seven hours per week in study groups or on their own. There is a
weekly mandatory assignment.

Exam: The examination resembles an ordinary lab session. The
students are tested in groups of up to 25 at a time. The effective
examination time is 30 minutes (occasionally, for various reasons,
we allowed a bit more time); a full hour is scheduled for each
group to allow for preparing and finalizing (upload, etc.). Each
group receives a different assignment consisting of 10 small pro-
gressive programming tasks. In principle, the assignments are
identical (they are all instances of the same generic assignment).
There are two checkpoints in the assignment: one after task three
and one after task eight. The students are instructed to call upon
an examiner to demonstrate their solutions when they reach either
of the checkpoints. For each student, we noted the elapsed time at
both checkpoints as well as when (if) they finished the assignment
(first interval, second interval, and final time), thus providing a
rough measure of the student’s efficiency and competence.
A more detailed description of the course can be found in [7]; an
evaluation of the examination can be found in [4].

4.3 Subjects
There are approximately 300 students from a variety of study pro-
grammes, e.g. computer science, mathematics, geology, nano sci-
ence, economy, multimedia, etc. Forty percent of the students are
majors in computer science; they are the only group of students
that continues with the second half of CS1. The rest of the stu-
dents proceed to other programming courses related to their fields
(e.g. multimedia programming, scientific computing, etc.).
The population for this study was 142 students; of the 150 stu-
dents who volunteered to participate at the beginning of the
course, 142 attended the final exam.
The students answered the questionnaire in the first week before
the assignment statement was taught.

4.4 Classification of Mental Model and Exam
Result
To determine the consistency of the mental model for each of the
students, we used the categorization instrument proposed by Deh-
nadi [13]. From the 12-tuple that describes the mental models ap-
plied by a student in the questionnaire, we divided the students
into five categories Ci, 0 ≤ i < 5, of decreasing consistency, C0 be-
ing the most consistent category and C4 the least consistent cate-
gory. A student is in consistency category C0 if at least eight men-
tal models in the student’s 12-tuple are identical. For the coarse-
grained consistent/inconsistent categorization, students in C0 are
considered consistent while students in any of the other categories
are considered inconsistent. For further details, see [13].
The binary pass/fail grading of the exam was too coarse-grained
to allow for statistical analysis. Therefore, we subdivided the stu-

dents into four groups, Gi, 0 ≤ i < 4. G0 represents the students
that failed the exam; G1 represents the students who barely passed
the exam (i.e. reached the second checkpoint in the very last min-
ute), G2 represents the students who produced an average per-
formance (i.e. reached the second checkpoint in due time but did
not finish the assignment), and G3 represents the students who
finished the assignment within the time limit with a program that
fulfils the complete specification.

5. FINDINGS
In this section, we present the findings from the questionnaire.

5.1 Results
The distribution between consistent and inconsistent broken down
to the exam result and prior programming experience is shown in
Table 1.

 Consistent Inconsistent
Total 124 18
Pass at the final exam 120 16
Fail at the final exam 4 2
Prior programming experience 85 2
No prior programming experience 39 16

Table 1: Number of consistent and inconsistent students
We might consider breaking the data down to other variables, e.g.
gender, major, and seniority (study age); however, from previous
research, we know that these do not influence students’ perform-
ance in this course [6]).

5.2 Programming Aptitude
In order to validate Dehnadi and Bornat’s findings, we have used
a Pearson correlation coefficient test [23] to find if, for students
with no prior programming experience, there is a significant cor-
relation between the consistency level and the grading level (ac-
cording to the C- and G-categories described in section 4.4).

The P-value is −0.072. Thus, we concluded that there is no corre-
lation between consistency of the mental model and performance
in our introductory programming course, i.e. we cannot verify
Dehnadi and Bornat’s findings. Traditionally, a P-value of at least
0.3 (numerically) is required for correlation. (The negative P-
value is expected since C0 corresponds to the highest level of con-
sistency and C4 to the lowest level of consistency.)
To take a closer look at this contradictory result, we have tested
for correlation for a more fine-grained partitioning than the five
competence-levels and four grading levels applied above.
We made a more fine-grained partitioning of the mental models
by refining the Ci categories: Ci represents the students’ whose
maximum number of answers of the same mental model equals i,
thus providing 13 different categories of mental models. Simi-
larly, we have refined the Gi categories to reflect the students’
performance according to the second interval (the time elapsed
when reaching the second checkpoint), i.e. Gi is the students for
whom the second interval is i minutes.
The distribution of the data certainly does not indicate a correla-
tion (see Figure 2). A Pearson correlation test confirms this im-
pression with the same result as before (P=−0.075).
Our result is a clear and unequivocal rejection of the research
question: there is absolutely no correlation between students’ con-
sistency of the mental model applied in the questionnaire and

their performance in the final exam of a seven-week introductory,
model-based, object-oriented programming course.

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Ci : maximum number of answers of the same mental model

G
i: t

he
 ti

m
e

el
ap

se
d

w
he

n
re

ac
hi

ng
 th

e
se

co
nd

ch

ec
kp

oi
nt

:

Figure 2: Second interval versus maximum number of identical

mental models in 12-tuple
If the hypothesis of positive correlation between a student’s men-
tal model and ability to learn programming is to be confirmed, it
requires an interpretation of the mental model which is different
than the one reflected in Dehnadi’s questionnaire or another inter-
pretation of ability to learn programming different than the one
reflected by the exam of the introductory programming course.

6. DISCUSSION
Our unequivocal result gives rise to a number of questions. One
question is whether Dehnadi and Bornat’s interpretation of their
results is viable. Another question is the validity of the test in-
strument and speculations about other and better test instruments.
But before we address these questions, let us look at possible ex-
planations of our differing results.

6.1 Explaining the Differing Results
The large number of non-fixed variables in Dehnadi and Bornat’s
investigation and ours allow many explanations. First of all, the
investigations have been carried out in different course contexts.
We do not know much about the nature of the course at Middle-
sex University, but it is undoubtly different than ours and may be
so in many respects: course material (e.g. textbook, programming
language, development environment), course structure (e.g. num-
ber of lectures and lab hours), course work (e.g. mandatory as-
signments, project work), availability of resources (e.g. support
material, support for collaboration, student/instructor ratio), and
the degree of alignment (concordance between syllabus, course
content and the exam). Also, the exam may be different; again,
we do not know anything about the nature of the courses at Mid-
dlesex University. The instructor is different and may be so in
many respects (e.g. teaching experience, familiarity with the sub-
ject, personal attitude), and, finally, the students may be different
in many ways (e.g. age, study seniority, major).

With all this variation, how can we ever generalise findings from
the context where the findings are identified? The best way is by
inductive reasoning which can be fuelled by similar findings
across a multitude of institutions [16].

6.2 Questioning the Validity of the Test In-
strument
Dehnadi and Bornat’s interpretation of the students’ behaviour in
the first test goes as follows: “What distinguish the three groups
in the first test is their different attitudes to meaninglessness. The
consistent group showed a pre-acceptance of this fact: they are
capable of seeing mathematical calculation problems in terms of
rules, and can follow those rules wheresoever they may lead. The
inconsistent group, on the other hand, looks for meaning where it
is not. The blank group knows that it is looking at meaningless-
ness, and refuses to deal with it.”
Contrary to Dehnadi and Bornat, we interviewed our subjects. We
conducted individual interviews with the 14 students who were
inconsistent but did pass the final exam. They all remembered the
test very well. Interestingly, they all started out with some mental
model, some set of rules that gave meaning to the “meaningless”
notation in the questionnaire. The problem for the 14 students was
that the model they started out with failed at some point before
the end of the test. Not knowing about the purpose of the test, and
not considering it important, none of the students cared to back-
track to find a viable model. They simply altered their model and
went on from there. Our harsh conclusion is that it seems as if the
only thing the test instrument is testing is the students’ guessing
capabilities; can they guess a viable model up front or can they
not? This is hardly an interesting classification of students.

6.3 Alternative Test Instruments
In the light of the conclusion of the previous section, we must re-
ject the test instrument proposed by Dehnadi and Bornat. How-
ever, the idea of testing a correlation between the inclination to
give meaning to meaninglessness and performance in an introduc-
tory programming course, as suggested by Dehnadi and Bornat’s
comment in their interpretation of their observations, hints at an
alternative test instrument.
If the hypothesis is that the inclination to give meaning to mean-
inglessness is a predictor of success in an introductory program-
ming course, we should devise a test instrument for that. Such a
test instrument can easily be constructed by describing a meaning-
less set of rules and then asking the students to apply these rules
to a number of situations. Different test instruments could be con-
structed: some that invite for interpretation and resulting false ap-
plications of the rule set, and some that (by being more neutral)
does not. Developing different test instruments along these lines
enables tests of the test instruments which in itself is a reasonable
task to undertake.

7. CONCLUSION
We tested the hypothesis of a correlation between a student’s
mental model (according to Dehnadi’s definition in [14]) and how
well the student performs in an introductory programming course
at university. Our result is an unequivocal rejection of the hy-
pothesis.

The result is a surprise⎯at least in light of [14] in which the au-
thors conclude that the test, although not perfect, is the first test to
claim any degree of success.

We have enumerated many explanations for our differing results;
in particular, we question the test instrument from [13] used to
categorise students according to the mental model, and we suggest
a research method from which it may be possible to generalize
local results in this area.
A qualitative analysis in the form of interviews with selected sub-
jects has revealed that the test instrument does not seem to meas-
ure what it is supposed to; based on insights from the interviews
we have devised alternative test instruments.
Our result is encouraging since we do not adhere to the sheep-
goat presumption about programming aptitude. To the extent that
we shall ever be able to identify concrete factors that predict suc-
cess, we will use these to improve students’ background to in-
crease their chances for success in learning to program. That is
our motivation for doing research in this area.

Dehnadi and Bornat’s idea of predicting success from mental
model is interesting and maybe viable but at least requires an im-
proved test instrument.

8. ACKNOWLEDGMENTS
We thank all the students from the course Introduction to Pro-
gramming at the University of Aarhus in the fall of 2006 who
took the time to participate and make this research possible.

9. REFERENCES
[1] C. Arthur. How can I tell if I'll be any good as a program-

mer? In The Guardian, Thursday July 27, 2006.
[2] J. Bennedsen. Teaching Java programming to media students

with a liberal arts background. In Proceedings for the 7th
Java & the Internet in the Computing Curriculum Confer-
ence (JICC 7) Monday 27th January 2003, 2003.

[3] J. Bennedsen & M. Caspersen. Abstraction ability as an indi-
cator of success for learning object-oriented programming?
SIGCSE Bulletin, 38(2):39-43, 2006.

[4] J. Bennedsen and M. Caspersen. Assessing Process and
Product - A Practical Lab Exam for an Introductory Pro-
gramming Course. In Proceedings of the 36th Annual Fron-
tiers in Education Conference, M4E-16-M4E-21, San Diego,
California October 28-31, 2006.

[5] J. Bennedsen and M. Caspersen. An Upcoming Study of Po-
tential Success Factors for an Introductory Model-Driven
Programming Course. In Proceedings for the Fifth Koli Call-
ing Conference on Computer Science Education pages 166-
169, Koli, Finland 18-20 November 2005.

[6] J. Bennedsen and M. E. Caspersen. An investigation of po-
tential success factors for an introductory model-driven pro-
gramming course. In ICER '05: Proceedings of the 2005 In-
ternational Workshop on Computing Education Research,
155-163, Seattle, WA, USA, 2005.

[7] J. Bennedsen and M. E. Caspersen. Programming in context:
a model-first approach to CS1. In SIGCSE '04: Proceedings
of the 35th Technical Symposium on Computer Science Edu-
cation, 477-481, Norfolk, Virginia, USA, 2004.

[8] S. Bergin and R. Reilly. Programming: factors that influence
success. In SIGCSE '05: Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education, 411-
415, St. Louis, Missouri, USA, 2005.

[9] D. F. Butcher & W. A. Muth. Predicting performance in an
introductory computer science course. Communications of
the ACM, 28(3):263-268, 1985.

[10] P. Byrne and G. Lyons. The effect of student attributes on
success in programming. In ITiCSE '01: Proceedings of the
6th Annual Conference on Innovation and Technology in
Computer Science Education, 49-52, Canterbury, United
Kingdom, 2001.

[11] C. G. Cegielski & D. J. Hall. What makes a good program-
mer? Communications of the ACM, 49(10):73-75, 2006.

[12] A. T. Chamillard. Using student performance predictions in a
computer science curriculum. In ITICSE '06: Proceedings of
the 11th Annual Conference on Innovation and Technology
in Computer Science Education, 260-264, Bologna, Italy,
2006.

[13] S. Dehnadi. Testing programming Aptitude. In Proceedings
of the 18th Annual Workshop of the Psychology of Pro-
gramming Interest Group, 22-37, Brighton, UK, 2006.

[14] S. Dehnadi and R. Bornat. The camel has two humps. 2006.
www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

[15] G. E. Evans & M. G. Simkin. What best predicts computer
proficiency? Communication of the ACM, 32(11):1322-1327,
1989.

[16] S. Fincher and M. Petre. Computer Science Education Re-
search. Routledge Falmer, London, 2004.

[17] D. Hagan and S. Markham. Does it help to have some pro-
gramming experience before beginning a computing degree
program? In ITiCSE '00: Proceedings of the 5th Annual Con-
ference on Innovation and Technology in Computer Science
Education, 25-28, Helsinki, Finland, 2000.

[18] R. R. Leeper and J. L. Silver. Predicting success in a first
programming course. In SIGCSE '82: Proceedings of the
Thirteenth Technical Symposium on Computer Science Edu-
cation, 147-150, Indianapolis, Indiana, United States, 1982.

[19] L. P. McCoy & J. K. Burton. The relationship of computer
programming and mathematics in secondary students. Com-
put. Sch. 4(3-4):159-166, 1988.

[20] N. Pillay & V. R. Jugoo. An investigation into student char-
acteristics affecting novice programming performance. SIG-
CSE Bulletin, 37(4):107-110, 2005.

[21] N. Rountree, J. Rountree, A. Robins and R. Hannah. Inter-
acting factors that predict success and failure in a CS1
course. In ITiCSE-WGR '04: Working Group Reports from
Innovation and Technology in Computer Science Education,
101-104, Leeds, United Kingdom, 2004.

[22] P. Ventura. Identifying predictors of success for an objects-
first CS1. Computer Science Education, 15(3):223-243,
2005.

[23] L. Wallnau and F. Gravetter. Essentials of Statistics for the
Behavioral Sciences. Thomson Learning, New York, 2005.

[24] B. C. Wilson and S. Shrock. Contributing to success in an
introductory computer science course: a study of twelve fac-
tors. In SIGCSE '01: Proceedings of the thirty-second tech-
nical symposium on Computer Science Education, 184-188,
Charlotte, North Carolina, United States, 2001.

