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ABSTRACT 
Predicting the success of students participating in introductory 
programming courses has been an active research area for more 
than 25 years. Until recently, no variables or tests have had any 
significant predictive power. However, Dehnadi and Bornat claim 
to have found a simple test for programming aptitude to cleanly 
separate programming sheep from non-programming goats. We 
briefly present their theory and test instrument. 

We have repeated their test in our local context in order to verify 
and perhaps generalise their findings, but we could not show that 
the test predicts students’ success in our introductory program-
ming course. 

Based on this failure of the test instrument, we discuss various 
explanations for our differing results and suggest a research 
method from which it may be possible to generalise local results 
in this area. Furthermore, we discuss and criticize Dehnadi and 
Bornat’s programming aptitude test and devise alternative test 
instruments. 

Categories and Subject Descriptors 
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education. 

General Terms 
Experimentation, Human Factors. 

Keywords 
Objects-first, CS1, introductory programming, object-oriented 
programming, predictors of success. 

1. INTRODUCTION 
In a teaser email circulated in late 2005, shortly before the PPIG 
workshop in January 2006, Richard Bornat wrote: “We have a 
scientific breakthrough that we’d like to announce at your little 
PPIG. The breakthrough is that Saeed has a test which picks out, 
with 100% accuracy, those people who have a chance of learning 
to program and rejects, with 100% accuracy, those who have no 

chance. Don’t believe it? Neither did I, at first, but it’s true. And 
I’m not telling you, before the little PPIG, just how it’s done. But 
of course I will tell you all there.” 

We learned about the test in conjunction with the PPIG workshop 
in January 2006. Having searched for predictors of success for 
introductory programming courses, we were certainly intrigued 
by the promotion material, and we decided to try to verify 
Dehnadi and Bornat’s findings. 

This paper describes what we found. As has already been noted in 
the abstract, we have not been able to verify Dehnadi and Bor-
nat’s findings. 

In the next section, we provide a brief overview of some of the 
research which aims at finding predictors of success for computer 
science studies at universities. In section 3, we describe the pro-
gramming aptitude test developed at Middlesex University by 
Dehnadi and Bornat and their preliminary results. In sections 4 
and 5, we present our research method and our findings, which we 
discuss in section 6. Section 7 provides a succinct conclusion. 

2. RELATED WORK 
There has been a substantial amount of research conducted to 
identify general variables that are predictors of the success of stu-
dents aiming for a degree in computer science. Investigated vari-
ables encompass gender [21, 22], ACT/SAT scores [9], students’ 
mathematical abilities [6, 19, 22], performance in prior courses 
[12], emotional factors [11], abstraction ability [3], and students’ 
own beliefs [24]. Research has also been conducted in the more 
specific area of introductory programming [2, 5, 8, 10, 17, 18, 
20]. 
Evans and Simkin [15] sum up the arguments given in many stud-
ies for performing this kind of study: 

1. Discriminating among enrolment applicants 
2. Advising students on majors 
3. Identifying productive programmers 
4. Identifying employees who might best profit from addi-

tional training 
5. Improving computer classes for non-CIS majors 
6. Determining the importance of oft-cited predictors of 

computer competency such as gender or math ability 
7. Exploring the relationship between programming abili-

ties and other cognitive reasoning processes 

Dehnadi and Bornat [1, 13, 14] claim they have found a way to 
identify students who will not succeed in learning programming. 
Based on a test of 60 students, they claim “[w]e have found a test 
for programming aptitude, of which we give details. Remarkably, 
we can predict success or failure even before students have had 
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any contact with any programming language, and with total accu-
racy.” [14]. 
Our rationale for conducting this study is primarily to verify the 
claims made by Dehnadi and Bornat and to build up knowledge 
about factors that influence students’ learning of programming. 

3. TEST FOR PROGRAMMING APTI-
TUDE 
In this section, we describe the programming aptitude test devel-
oped at Middlesex University by Dehnadi and Bornat and their 
preliminary results as reported in [14]. 
Dehnadi and Bornat classified students according to their consis-
tency in answering a set of similar questions. The overall hy-
pothesis is that consistent students and consistent students only 
will be able to learn to program. 
To determine consistency, Dehnadi and Bornat used a question-
naire with 12 small Java programs. Each program consists of two 
variable declarations and one, two, or three assignment state-
ments; Figure 1 shows a sample. 

5.   Read the follow-
ing statements and 
tick the box next to 
the correct answer in 
the next column.         
 
int  a = 10; 

int  b = 20; 

 

b = a; 

a = b; 

 
 
 
 

The new values of a and b are: 
� a = 30      b = 50     

� a = 10      b = 10     

� a = 20      b = 20     

� a = 10      b =  0     

� a =  0      b = 20     

� a = 30      b =  0     

� a = 40      b = 30     

� a =  0      b = 30     

� a = 20      b = 10    

� a = 30      b = 30    

� a = 10      b = 20     

 

Any other values for a and b: 
    a =         b =       

    a =         b =       

    a =         b =      

Figure 1:  A sample question from Dehnadi and Bornat’s ques-
tionnaire 

Dehnadi and Bornat have identified 11 different mental models 
which are captured by options in the questionnaire (along with the 
last option: other). The questionnaire contains 12 questions simi-
lar to the one in Figure 1, giving rise to a 12-tuple describing the 
mental models applied by a student (e.g. (m7, m3, ..., m7)) where 
mi represents a mental model. The 12-tuple is used to assign each 
student to one of three categories: 

• The consistent group. The students who use the same mental 
model for most of the questions (irregardless of which model). 

• The inconsistent group. The students who use varying mental 
models for the questions. 

• The blank group. The students who refuse to answer the ques-
tions. 

In [13], the authors write: “The consistent/inconsistent/blank as-
signment which is the basis of our preliminary result was rather 
subjective”. In [13], the authors develop a more objective instru-
ment for categorisation of the students⎯an instrument which we 
shall use in our investigation. 
Dehnadi and Bornat found that 44% of their students belong to 
the consistent group, and 39% belong to the inconsistent group; 
8% left the questionnaire blank (the remaining 9% are missing). 
In [14], the authors conclude that the test, although not perfect, is 
the first test to be able to claim any degree of success: 

“[Our analysis] shows that the first administration of 
Dehnadi’s test reliably separated the consistent group, who 
almost all scored 50 or above, from the rest, who almost all 
scored below 50, with only 4 out of 27 false positives in the 
consistent group and 9 out of 34 false negatives in the rest 
[...]. Clearly, Dehnadi’s test is not a perfect divider of pro-
gramming sheep from non-programming goats. Nevertheless, 
if it [was] used as an admissions barrier, and only those who 
scored consistently were admitted, the pass/fail statistics 
would be transformed. In the total population 32 out of 61 
(52%) failed; in the first-test consistent group only 6 out of 27 
(22%). We believe that we can claim that we have a predictive 
test which can be taken prior to the course to determine, with 
a very high degree of accuracy, which students will be suc-
cessful. This is, so far as we are aware, the first test to be able 
to claim any degree of predictive success.” 

It is indeed very interesting if Dehnadi and Bornat have found a 
predictive test as they describe. 

4. RESEARCH METHOD 
In this section, we discuss the methodology used in our study. 

4.1 Hypothesis 
In this study, we examined the predictive power of a student’s 
mental model for his or her success in learning introductory pro-
gramming; the hypothesis is that there is a positive correlation 
between a student’s mental model and the student’s ability to 
learn programming. The specific research question we investi-
gated is the following: 

Is there a correlation between the students’ consistency in the 
mental model applied in questionnaire and their performance 
in the final exam of a seven-week introductory, model-based, 
object-oriented programming course? 

4.2 The Course 
The programming course spans the first half of CS1 at the Uni-
versity of Aarhus. The course runs for seven weeks; two weeks 
after the course ends, there is a lab examination with binary 
pass/fail grading. The grading is based solely upon the final ex-
amination; acceptable performance during the course is a prereq-
uisite for the final exam but does not count as part of the grading. 

Aims: The purpose of the course is for students learn the founda-
tion for systematic construction of simple programs and, through 
this, obtain knowledge about the role of conceptual modeling in 
object-oriented programming. The goal is that students become 
familiar with a modern programming language, fundamental pro-
gramming language concepts, and selected class libraries. 



Competencies: After the course, students should be able to ex-
plain and use fundamental elements in a modern programming 
language, use conceptual modelling in relation to preparing sim-
ple object-oriented programs, implement simple object-oriented 
models in a programming language, and use selected class librar-
ies. 

Form: The course runs for seven weeks; every week, there are 
four lecture hours and four lab hours with a TA. In addition to the 
scheduled hours, students are supposed to work approximately 
seven hours per week in study groups or on their own. There is a 
weekly mandatory assignment. 

Exam: The examination resembles an ordinary lab session. The 
students are tested in groups of up to 25 at a time. The effective 
examination time is 30 minutes (occasionally, for various reasons, 
we allowed a bit more time); a full hour is scheduled for each 
group to allow for preparing and finalizing (upload, etc.). Each 
group receives a different assignment consisting of 10 small pro-
gressive programming tasks. In principle, the assignments are 
identical (they are all instances of the same generic assignment). 
There are two checkpoints in the assignment: one after task three 
and one after task eight. The students are instructed to call upon 
an examiner to demonstrate their solutions when they reach either 
of the checkpoints. For each student, we noted the elapsed time at 
both checkpoints as well as when (if) they finished the assignment 
(first interval, second interval, and final time), thus providing a 
rough measure of the student’s efficiency and competence. 
A more detailed description of the course can be found in [7]; an 
evaluation of the examination can be found in [4]. 

4.3 Subjects 
There are approximately 300 students from a variety of study pro-
grammes, e.g. computer science, mathematics, geology, nano sci-
ence, economy, multimedia, etc. Forty percent of the students are 
majors in computer science; they are the only group of students 
that continues with the second half of CS1. The rest of the stu-
dents proceed to other programming courses related to their fields 
(e.g. multimedia programming, scientific computing, etc.). 
The population for this study was 142 students; of the 150 stu-
dents who volunteered to participate at the beginning of the 
course, 142 attended the final exam. 
The students answered the questionnaire in the first week before 
the assignment statement was taught. 

4.4 Classification of Mental Model and Exam 
Result 
To determine the consistency of the mental model for each of the 
students, we used the categorization instrument proposed by Deh-
nadi [13]. From the 12-tuple that describes the mental models ap-
plied by a student in the questionnaire, we divided the students 
into five categories Ci, 0 ≤ i < 5, of decreasing consistency, C0 be-
ing the most consistent category and C4 the least consistent cate-
gory. A student is in consistency category C0 if at least eight men-
tal models in the student’s 12-tuple are identical. For the coarse-
grained consistent/inconsistent categorization, students in C0 are 
considered consistent while students in any of the other categories 
are considered inconsistent. For further details, see [13]. 
The binary pass/fail grading of the exam was too coarse-grained 
to allow for statistical analysis. Therefore, we subdivided the stu-

dents into four groups, Gi, 0 ≤ i < 4. G0 represents the students 
that failed the exam; G1 represents the students who barely passed 
the exam (i.e. reached the second checkpoint in the very last min-
ute), G2 represents the students who produced an average per-
formance (i.e. reached the second checkpoint in due time but did 
not finish the assignment), and G3 represents the students who 
finished the assignment within the time limit with a program that 
fulfils the complete specification. 

5. FINDINGS 
In this section, we present the findings from the questionnaire. 

5.1 Results 
The distribution between consistent and inconsistent broken down 
to the exam result and prior programming experience is shown in 
Table 1. 

 Consistent Inconsistent 
Total 124 18 
Pass at the final exam 120 16 
Fail at the final exam 4 2 
Prior programming experience 85 2 
No prior programming experience 39 16 

Table 1: Number of consistent and inconsistent students 
We might consider breaking the data down to other variables, e.g. 
gender, major, and seniority (study age); however, from previous 
research, we know that these do not influence students’ perform-
ance in this course [6]). 

5.2 Programming Aptitude 
In order to validate Dehnadi and Bornat’s findings, we have used 
a Pearson correlation coefficient test [23] to find if, for students 
with no prior programming experience, there is a significant cor-
relation between the consistency level and the grading level (ac-
cording to the C- and G-categories described in section 4.4). 

The P-value is −0.072. Thus, we concluded that there is no corre-
lation between consistency of the mental model and performance 
in our introductory programming course, i.e. we cannot verify 
Dehnadi and Bornat’s findings. Traditionally, a P-value of at least 
0.3 (numerically) is required for correlation. (The negative P-
value is expected since C0 corresponds to the highest level of con-
sistency and C4 to the lowest level of consistency.) 
To take a closer look at this contradictory result, we have tested 
for correlation for a more fine-grained partitioning than the five 
competence-levels and four grading levels applied above. 
We made a more fine-grained partitioning of the mental models 
by refining the Ci categories: Ci represents the students’ whose 
maximum number of answers of the same mental model equals i, 
thus providing 13 different categories of mental models. Simi-
larly, we have refined the Gi categories to reflect the students’ 
performance according to the second interval (the time elapsed 
when reaching the second checkpoint), i.e. Gi is the students for 
whom the second interval is i minutes. 
The distribution of the data certainly does not indicate a correla-
tion (see Figure 2). A Pearson correlation test confirms this im-
pression with the same result as before (P=−0.075). 
Our result is a clear and unequivocal rejection of the research 
question: there is absolutely no correlation between students’ con-
sistency of the mental model applied in the questionnaire and 



their performance in the final exam of a seven-week introductory, 
model-based, object-oriented programming course. 
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Figure 2: Second interval versus maximum number of identical 

mental models in 12-tuple 
If the hypothesis of positive correlation between a student’s men-
tal model and ability to learn programming is to be confirmed, it 
requires an interpretation of the mental model which is different 
than the one reflected in Dehnadi’s questionnaire or another inter-
pretation of ability to learn programming different than the one 
reflected by the exam of the introductory programming course. 

6. DISCUSSION 
Our unequivocal result gives rise to a number of questions. One 
question is whether Dehnadi and Bornat’s interpretation of their 
results is viable. Another question is the validity of the test in-
strument and speculations about other and better test instruments. 
But before we address these questions, let us look at possible ex-
planations of our differing results. 

6.1 Explaining the Differing Results 
The large number of non-fixed variables in Dehnadi and Bornat’s 
investigation and ours allow many explanations. First of all, the 
investigations have been carried out in different course contexts. 
We do not know much about the nature of the course at Middle-
sex University, but it is undoubtly different than ours and may be 
so in many respects: course material (e.g. textbook, programming 
language, development environment), course structure (e.g. num-
ber of lectures and lab hours), course work (e.g. mandatory as-
signments, project work), availability of resources (e.g. support 
material, support for collaboration, student/instructor ratio), and 
the degree of alignment (concordance between syllabus, course 
content and the exam). Also, the exam may be different; again, 
we do not know anything about the nature of the courses at Mid-
dlesex University. The instructor is different and may be so in 
many respects (e.g. teaching experience, familiarity with the sub-
ject, personal attitude), and, finally, the students may be different 
in many ways (e.g. age, study seniority, major). 

With all this variation, how can we ever generalise findings from 
the context where the findings are identified? The best way is by 
inductive reasoning which can be fuelled by similar findings 
across a multitude of institutions [16]. 

6.2 Questioning the Validity of the Test In-
strument 
Dehnadi and Bornat’s interpretation of the students’ behaviour in 
the first test goes as follows: “What distinguish the three groups 
in the first test is their different attitudes to meaninglessness. The 
consistent group showed a pre-acceptance of this fact: they are 
capable of seeing mathematical calculation problems in terms of 
rules, and can follow those rules wheresoever they may lead. The 
inconsistent group, on the other hand, looks for meaning where it 
is not. The blank group knows that it is looking at meaningless-
ness, and refuses to deal with it.” 
Contrary to Dehnadi and Bornat, we interviewed our subjects. We 
conducted individual interviews with the 14 students who were 
inconsistent but did pass the final exam. They all remembered the 
test very well. Interestingly, they all started out with some mental 
model, some set of rules that gave meaning to the “meaningless” 
notation in the questionnaire. The problem for the 14 students was 
that the model they started out with failed at some point before 
the end of the test. Not knowing about the purpose of the test, and 
not considering it important, none of the students cared to back-
track to find a viable model. They simply altered their model and 
went on from there. Our harsh conclusion is that it seems as if the 
only thing the test instrument is testing is the students’ guessing 
capabilities; can they guess a viable model up front or can they 
not? This is hardly an interesting classification of students. 

6.3 Alternative Test Instruments 
In the light of the conclusion of the previous section, we must re-
ject the test instrument proposed by Dehnadi and Bornat. How-
ever, the idea of testing a correlation between the inclination to 
give meaning to meaninglessness and performance in an introduc-
tory programming course, as suggested by Dehnadi and Bornat’s 
comment in their interpretation of their observations, hints at an 
alternative test instrument. 
If the hypothesis is that the inclination to give meaning to mean-
inglessness is a predictor of success in an introductory program-
ming course, we should devise a test instrument for that. Such a 
test instrument can easily be constructed by describing a meaning-
less set of rules and then asking the students to apply these rules 
to a number of situations. Different test instruments could be con-
structed: some that invite for interpretation and resulting false ap-
plications of the rule set, and some that (by being more neutral) 
does not. Developing different test instruments along these lines 
enables tests of the test instruments which in itself is a reasonable 
task to undertake. 

7. CONCLUSION 
We tested the hypothesis of a correlation between a student’s 
mental model (according to Dehnadi’s definition in [14]) and how 
well the student performs in an introductory programming course 
at university. Our result is an unequivocal rejection of the hy-
pothesis. 

The result is a surprise⎯at least in light of [14] in which the au-
thors conclude that the test, although not perfect, is the first test to 
claim any degree of success. 



We have enumerated many explanations for our differing results; 
in particular, we question the test instrument from [13] used to 
categorise students according to the mental model, and we suggest 
a research method from which it may be possible to generalize 
local results in this area. 
A qualitative analysis in the form of interviews with selected sub-
jects has revealed that the test instrument does not seem to meas-
ure what it is supposed to; based on insights from the interviews 
we have devised alternative test instruments. 
Our result is encouraging since we do not adhere to the sheep-
goat presumption about programming aptitude. To the extent that 
we shall ever be able to identify concrete factors that predict suc-
cess, we will use these to improve students’ background to in-
crease their chances for success in learning to program. That is 
our motivation for doing research in this area. 

Dehnadi and Bornat’s idea of predicting success from mental 
model is interesting and maybe viable but at least requires an im-
proved test instrument. 
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