Frameworks in CS1 — a Different Way of Introducing
Event-driven Programming

Henrik Baerbak Christensen
Department of Computer Science
University of Aarhus
8200 Aarhus N, Denmark

hbc@daimi.au.dk

ABSTRACT

In this paper we argue that introducing object-oriented frameworks
as subject aready in the CS1 curriculum is important if we are to
train the programmers of tomorrow to become just as much soft-
ware reusers as software producers. We present a smple, graph-
ical, framework that we have successfully used to introduce the
principles of object-oriented frameworks to students at the intro-
ductory programming level. Our framework, while simple, intro-
duces central abstractions such asinversion of control, event-driven
programming, and variability points/hot-spots. Thishas provided a
good starting point for introducing graphical user interface frame-
works such as Java Swing and AWT as the students are not over-
whelmed by all the details of such frameworks right away but given
a conceptual road-map and practical experience that allow them to
cope with the compl exity.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented Program-
ming; D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Design Tools and Techniques; D.2.13 [Software
Engineering]: Reusable Software; 1.3 [Computing M ethodolo-
gies]: Computer Graphics; K.3 [Computing Milieux]: Computers
and Education

General Terms
Design, Human Factors

Keywords

CS 1 Curriculum, Event-driven Programming, Frameworks

1. INTRODUCTION

We are presently teaching a CS1 course with an objects-first ap-
proach using Java. The curriculum covers four central subjects:

e Jump start: classes, objects, methods, control flow, parame-
terization

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ITICSE’02, June 24-26, 2002, Aarhus, Denmark.

Copyright 2002 ACM 1-58113-499-1/02/0006 ...$5.00.

Michael E. Caspersen
Department of Computer Science
University of Aarhus
8200 Aarhus N, Denmark

mec@daimi.au.dk

e Basic object-oriented programming: state, behavior, infor-
meation hiding, modeling, UML to Java

e Algorithmic patterns. sweep, loop invariants, searching,
merging, divide-and-conquer

e Advanced object-oriented programming: polymorphism, in-
terfaces, specifications, design-by-contract, class invariants,
frameworks, GUI-programming

As part of the advanced object-oriented programming subject,
we teach the principles of programming using frameworks (not
building them) and, based upon this treatment, graphical user in-
terface frameworks. While the subject of frameworksis considered
an advanced and complex topic, we have decided to include it in
the CS1 curriculum nevertheless for several reasons.

The most important reason is the realization that the program-
ming context most programmers are facing today is radically dif-
ferent from the one that existed, say, 10-15 years ago. Few modern
programs (or “systems”) are monolithic entities; instead they draw
upon functionality from many different sources: third party com-
ponents, object-oriented frameworks, dynamic link libraries, etc.
Thus programming today is more a matter of “gluing” application
code together with one or several frameworks and components than
to be able to write alarge monolithic program that doesit al by it-
self. In this changed context we find it natural that students at an
early stage are exposed to sound principles for making their code
cooperate with third party code, and we find object-oriented frame-
works to be agood vehicle for demonstrating these principles.

Another reason is pinpointed by Culwin [6]—today’s students
are confronted exclusively with graphical user interfaces asthe in-
terface to programs. To demonstrate programming only using text
10 is not very motivating.

We aso strongly think that we as teachers have a prime respon-
sibility to educate software reusers just as much as software pro-
ducers. Systematic software reuse [8, 10] is at the moment our
best cure against the “software crisis’. Forcing students to pro-
gram using frameworks is the right step towards producing soft-
ware reusers—and the result of their efforts look much more pro-
fessional than mere sequences of, say, prime numbersin atext box.

In this paper, we describe the introductory framework and the
exercises associated with it. We then discuss how the terminology
introduced by the simple framework is used in our introduction to
Java AWT as representative of modern object-oriented graphical
user interface frameworks. Finally we summarize and discuss some
of our experiences.

2. ATWO-STEP LEARNING PROCESS

We have adopted a two-step learning process for introducing
graphical user interface frameworks in order to lessen the learning
curve [3].

In the first step we teach the students a basic understanding of
the principles underlying frameworks, using aconcrete, simple, yet
flexible, framework example. The example has nevertheless the
fundamental characteristics of aframework:

e Inversion of control: The framework defines the control flow
and collaboration patterns of the objectsin the final applica-
tion, instead of the usua “driver” program that the students
write themselves.

e Hotspots [11]: The provided framework is abstract and needs
to be speciaized to the particular domain of the final appli-
cation. Abstract classes that must be subclassed define the
hotspots of our concrete framework.

In the second step we introduce Java AWT to the students
through the context and terminology introduced by the first step—
what are the hotspots of AWT and how do we tailor them to our
needs? Themain point isthat AWT/Swing islarge and complicated
and thus confusing to the beginner, and you simply must master the
underlying concepts and principlesin order not to be overwhelmed
by the sheer number of classes and methods.

3. FIRST STEP: PRESENTER FRAME-
WORK

Our requirements of the framework were the following aspects:
It should illustrate the basic principles of frameworks (inversion of
control and hotspots); it should be simple for students to use; it
should be flexible in the sense that a number of sensible instantia-
tions should be possible; it should be fun, challenging, and visual.

The result is a presenter framework. The presenter framework
facilitates construction of multi-media presentations of a domain
where the compass-directions are a suitable metaphor for user nav-
igation. (So far “multi-media’ islimited toimages and text but itis
straightforward to extend it to movies and sound.)

In our first step lecture we introduce the presenter framework
through a specific instantiation, namely a multi-media presentation
of the tomb of Tutankhamen, the pharaoh whose tomb was mirac-
ulously found rather intact in 1922 by Howard Carter [4].

In fig. 1 is shown a screen snapshot of the Tutankhamen tomb
presentation. The presenter framework is an applet thus the presen-
tation and later the student exercises can be run in aweb browser.

Using the four buttons marked with the compass directions the
user can navigate around the chambers of the tomb. In each cham-
ber the user is presented with a picture taken during the original
opening of the tomb along with some explanatory text.

It is our experience that the concrete instantiation—moving
around atomb with pictures from the original opening—grabs the
imagination of the students.

The Tutankhamen’s tomb instantiation also allows us to under-
line an important software engineering principle, namely separat-
ing model/domain code and user interaction code. We build asmall
object-oriented model of the domain with classes. chamber (hav-
ing exits, an image and a description) and visitor (having an asso-
ciation with a specific chamber and a move method). As the user
interaction code is completely defined by the framework, it issim-
ply impossible for the students to mix Ul and model code except
through the well-defined hotspots provided by the framework.

-] Al a Gl B~ =
Bzl Felieie) Stop Refresh Home | Search Favorites Histary Mail Print
Address |@ E:\teaching\ioop-E00\codelabAppletTutankhaman' TutankhamonPre sentation.htrmnl j @Go
N
= iou are in the burisl chamber of Tutankhamon. The sarcophagus fils most of the room barely leaving room far
o
you
West | {Eagi] [o s see it from the room going: SOUTHWEST
South =
L | AJ
&1 Done | [|2 My Computer 4

Figure 1. Thepresenter framework instantiated to present Tu-
tankhamen’stomb.

3.1 Design

The presenter framework provides the application programmer
with asimpleinterface (in practice the interface is split into two, as
described in the next section):

public abstract class ImagePresenter

{

public void showImage (String filename)

(...}

public void showText (String text) {...}

7

public abstract void northButtonPressed()
public abstract void eastButtonPressed() ;
public abstract void southButtonPressed() ;
public abstract void westButtonPressed() ;

An instance of ImagePresenter is an applet that provides
the graphical user interface: a large area for displaying images,
a smaller one for displaying text, and the four compass direction
buttons that respond to user clicks.

The showImage and showText methods are methods that
provide services for the application programmer (the students are

well versed in object oriented thinking at this point in the course).
Thus, to instantiate the tomb presentation is a matter of overrid-
ingthe . .ButtonPressed () methodsase.g. in:

public void northButtonPressed() {
visitor.move (NORTH) ;

}

where the move method of visitor must test for an exit leading north
and invoke the showImage and showText methods with appro-
priate parameters.

The new technique the students must adopt is that in order to
provide application specific functionality that reacts on user inter-
action, they have to subclass the abstract ImagePresenter to
define the actions to perform when the user presses the buttons on
the user interface. This raises discussions on the central pointsin
frameworks as outlined below.

3.2 Inversion of control

In their previous programming experience from example code
and exercises, there are always a number of interacting objects and
asingle ‘driver’ that does the setup and defines the main control
flow. Now the control flow is dictated and controlled by the pre-
senter framework instead. The application code comes into play
only when the overridden . . . ButtonPressed () methods are
caled. Thisisasimple variant of event-driven programming and
illustrates the inversion of control principle.

3.3 Hotspots

Frameworks define core functionality, control flow and object
collaboration patterns. Application programmers refine frame-
works to specific domains by adding code at well-defined points
denoted hotspots (also called hooks or variability points). Hotspots
can be defined using a number of different techniques: callback
methods, objects that implement interfaces, subclassing, etc. We
have adopted the subclassing technique as we find it the simplest
and as it also demonstrates yet another use of polymorphism and
specialization.

4. ELABORATION

We found that the framework could be used in more contexts
by introducing a higher level of abstraction: A presenter that does
not demand that the central graphical areais an image. Thus we
split the framework into providing aPresenter classand amore
specific subclass ImagePresenter, the latter being the one used
for thetomb instantiation. The Presenter only demands that the
graphical centre component isaJava AWT component and provides
an abstract factory method [7] for subclasses to define the concrete
instance.

Thus, the real framework classes are:

public abstract class Presenter

extends java.applet.Applet

implements ActionListener
{
public abstract java.awt.Component

createCenterComponent () ;

public void showText (String text) {...}
public abstract void northButtonPressed (
public abstract void eastButtonPressed()
public abstract void southButtonPressed (
public abstract void westButtonPressed()

7

7

)
)

public abstract class ImagePresenter
extends Presenter

public void showImage (String filename) {...}
public Component createCenterComponent () {
// return a Canvas instance
// that can display images

5. STUDENT EXERCISES

Several interesting, yet simple, instantiations can be made from
the Presenter and ImagePresenter frameworks.

Thefirst exerciseisto make avirtual tour of amuseum or gallery;
alayout of anumber of locationsin agalery is defined and a paint-
ing is associated with each location. The buttons can be used to
move around the gallery and see the various paintings. This exer-
ciseisdeliberately similar to the tomb instantiation. In another ex-
ercise only the “north” and “south” buttons are used to run through

alist of images, essentially making the presenter a slide-show ap-
plication.

The basic directional navigation metaphor also lends itself natu-
raly to “classic” adventure games. We have an extension of the
framework to include the ability to show two scrollable lists of
images, one on either side of the center image. The application
programmer can then program these so that one list represents an
inventory of objects (images) carried by the user and the other list
represents an inventory of objects in the visited location. A click-
event on an image in alist is a hotspot of the framework that the
student can refine to mean that objects are moved between the two
inventories.

In other exercises we base ourselves on the Presenter class that
takes any java.awt.Component as center component. Our
course uses an object-oriented variant of turtle graphics to intro-
duce people to programming and object-oriented thinking [5]. We
therefore ask the students to make a demonstration of the turtle
where the turtle moves some distance in the direction correspond-
ing to the compass direction that the user clicks. A snapshot of the
turtle instantiation is shown in fig. 2.

bonsing westto 50,25
Nunhl

Eastl
South |

Figure 2: The presenter framework instantiated to demon-
strateturtle graphics.

After having introduced the students to AWT, a dightly more
advanced exercises in instantiating the presenter framework is to
make a 4x4 slide-puzzle by defining a grid of buttons marked with
the numbers 1-15 and an empty button denoting the “hole”. The
“hole” is then moved by pressing the compass buttons so the user
can try and solve the puzzle by arranging the numbers in the right
pattern in the grid.

In summary we find that though the provided functionality of the
framework is limited and simple, there are a number of intriguing
exercises to be made based upon the framework that forces the stu-
dents to negotiate the basic principles of inversion of control and
refining hotspots.

6. SECOND STEP: JAVA AWT

The next step in the learning is introducing a real GUI frame-
work. We restrict ourselves to AWT instead of Swing: the prin-
ciples are the same but Swing contains even more detail that may
blur the picture for the students.

We have many indications that the students are helped by the
presenter framework as they learn AWT. They have seen the inver-
sion of control principle; they have seen the principle of refining
hotspots and can now concentrate on the particular technique used
in AWT for doing this refinement; finally, they are acquainted with
the underlying concepts and principles of framework design.

7. EXPERIENCE

At the time of writing our CS1 course has been taught seven
times. While we have made many changes in the course material
over the years, the Presenter framework has been taught with
success every time. Asthe framework has been used ever since we
started teaching this course we have no comparative eval uations of
the advantages and drawbacks of our approach compared to other
ways of introducing graphical user interfaces. However, we have a
number of experiences; though they are not rigid scientific evalua-
tions, they do illustrate key aspects of our approach.

First of al the students generally value the approach: The ex-
ercises are reported as “fun” and not too hard, the students value
the visual appearance of their programs, and most importantly they
value that the framework terminology they have learned is used to
ease and enhance their understanding of the much more compli-
cated AWT.

At the exams the students demonstrate adequate performance
on the topics of frameworks and graphical user interfaces, but of
course it is very difficult to measure curriculum quality from ex-
ams.

Finally we also find that the impact of teaching frameworks must
be measured on a long-term scale. We feel that even to students
that “just don’t get it” at this early stage, we have till planted a
small but important seed that will ease their learning of framework
theory, reuse techniques, design patterns, and software architecture
at alater stage.

8. RELATED WORK

To the best of our knowledge our approach is novel and has not
been reported elsewhere. However, several authors have reported
and discussed approaches for teaching how to program graphical
user interfaces at an early point in the CS curriculum. Common to
most approaches isthe desire to shield students from the underlying
complexity (through the use of design patterns such as adapter and
wrapper) more than to provide the conceptual tools to understand
the complexity.

Woodworth et al. [14] describe how migrating from console- to
event-driven models can be eased by introducing amodul e that acts
as an adapter between the event-driven user interface and the do-
main classes. Thisway the adapter behaves like the program driver
the students are used to from the console driven model. Wolz
et a. [13, 12] describe an approach that reduces the complexity
of GUI programming by wrapping the underlying user interface
toolkit in simpler abstractions.

Bruce et al. [2] describe an interesting approach where event-
driven models are introduced right at the start of the course and
report their approach to be successful.

Common to most approaches is that the main goal is to teach
programming GUI toolkits in CS1 and the event-driven model is
the obstacle to be handled (by wrapping it, adapting it, or other-

wise simplifying it). Our focus is radically different. Our main
goal isto teach frameworks and a GUI framework is just one type
of framework (although an important one). Teaching frameworks
isteaching inversion of control and how to refine hotspots, i.e. the
event-driven model comes out as a special case of inherent frame-
work behavior.

Buck et al. [3] outline an inside/out pedagogical approach based
on Bloom’s taxonomy for cognitive development. We find that our
two-step approach is in line with their ideas as the introductory
framework hasrelatively simple building blocks that allow students
to comprehend the basic concepts before they are asked to apply
them to build GUI interfaces themselves.

Our approach is an instance of the early bird pedagogical pat-
tern by Bergin [1]. Wefind that frameworks, reuse, and reuse tech-
niques are extremely important and must be presented at an early
point in the careers of the students and reinforced throughout their
studies.

9. SUMMARY

We have described our two-step approach for teaching the prin-
ciples of object-oriented frameworks. In the first step, we intro-
duce a simple framework that nevertheless has all main features
of afull-blown framework. This allows us to concentrate on the
main principles underlying frameworks without distracting details.
In the second step, we expose the students to the AWT framework
but can now draw upon their experiences with the concepts from
the much simpler Presenter framework.

As outlined earlier, we cannot present rigid evaluations that
demonstrate the strength of our approach. We do fedl, however,
that our argumentation in favour of the approach is strong and
valid. Thelearning curveto climb for the studentsin order to tackle
object-oriented graphical user interface frameworks is a steep one,
and breaking it into smaller steps is essential to succeed. Our ap-
proach is one of many possible ways of providing such smaller
steps but it has some unique benefits. It focuses on fundamental
issues in frameworks and reuse techniques instead of concentrat-
ing narrowly on event-driven user interfaces. The students are in-
troduced to the principles of object-oriented frameworks. In the
Presenter framework they are forced to separate domain model
code from their user interaction code, which is accepted as a su-
perior architecture for designing interactive applications. They are
taught that a programmer of today reuses code provided by others
instead of building everything from scratch. Finally they are taught
some of the central techniques for integrating reusable code with
their own application code laying a strong basis for later courses
that teach design patterns and software architecture.

The Presenter framework and sample instantiations can be
obtained free of charge by contacting one of the authors.

10. REFERENCES

[1] Bergin, J. Fourteen Pedagogical Patterns.
http://www.csi s.pace.edu/~ bergin/PedPat1.3.html.

[2] Bruce, K. B., Danyluk, A. P, and Murtagh, T. P.
Event-driven Programming is Simple Enough for CSL1. In
Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE’01
(Canterbury, UK, 2001), pp. 1-4.

[3] Buck, D., and Stucki, D. J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development. In Thirty-first SIGCSE
Technical Symposium on Computer Science Education
(Austin, Texas, USA, mar 2000), pp. 75-79.

[4] Carter, H., Mace, A., and White, J. M. The Discovery of the
Tomb of Tutankhamen. Dover Publications, 1985.

[5] Caspersen, M. E., and Christensen, H. B. Here, There and
Everywhere — On the Recurring Use of Turtle Graphicsin
CSL1. In Proceedings of the Fourth Australasian Computing
Education Conference, ACE 2000 (Melbourne, Australia,
Dec 2000), pp. 34-49.

[6] Culwin, F. Object Imperatives. In Joyce [9], pp. 31-36.

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reuseable Object-Oriented Software.
Addison-Wesley, 1994.

[8] Jacobson, 1., Griss, M., and Jonsson, P. Software Reuse:
Architecture Process and Organization for Business Success.
ACM Press, 1997.

[9] Joyce, D., Ed. Thirtieth SIGCSE Technical Symposium on
Computer Science Education (New Orleans, Louisianna, mar
1999).

[10] Karlsson, E.-A. Software Reuse — A Holistic Approach. John
Wiley and Sons, 1995.

[11] Pree, W. Design Patterns for Object-Oriented Software
Development. Addison-Wesley, 1995.

[12] Wolz, U., and Koffman, E. simplel O: a Java package for
novice interactive and graphics programming. In
Proceedings of the 4th annual SIGCSE/SIGCUE on
Innovation and technology in computer science education
(Krakow, Poland, jun 1999), pp. 139-142.

[13] Wolz, U., Weisgarber, S., Domen, D., and McAuliffe, M.
Teaching introductory programming in the multi-media
world. In Proceedings of the Conference on Integrating
Technology into Computer Science Education, ITiCSE’96
(Barcelona, Spain, jun 1996), pp. 57-59.

[14] Woodworth, P, and Dann, W. Integrating Console and
Event-Driven Modelsin CS1. In Joyce [9], pp. 132-135.

